{"title":"Deep Reinforcement Learning Based Automatic Control in Semi-Closed Greenhouse Systems","authors":"Akshay Ajagekar, F. You","doi":"10.23919/ACC53348.2022.9867162","DOIUrl":null,"url":null,"abstract":"This work proposes a novel deep reinforcement learning (DRL) based control framework for greenhouse climate control. This framework utilizes a neural network to approximate state-action value estimation. The neural network is trained by adopting a Q-learning based approach for experience collection and parameter updates. Continuous action spaces are effectively handled by the proposed approach by extracting optimal actions for a given greenhouse state from the neural network approximator through stochastic gradient ascent. Analytical gradients of the state-action value estimate are not required but can be computed effectively through backpropagation. We evaluate the performance of our DRL algorithm on a semi-closed greenhouse simulation located in New York City. The obtained computational results indicate that the proposed Q-learning based DRL framework yields higher cumulative returns. They also demonstrate that the proposed control technique consumes 61% lesser energy than deep deterministic policy gradient (DDPG) method.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This work proposes a novel deep reinforcement learning (DRL) based control framework for greenhouse climate control. This framework utilizes a neural network to approximate state-action value estimation. The neural network is trained by adopting a Q-learning based approach for experience collection and parameter updates. Continuous action spaces are effectively handled by the proposed approach by extracting optimal actions for a given greenhouse state from the neural network approximator through stochastic gradient ascent. Analytical gradients of the state-action value estimate are not required but can be computed effectively through backpropagation. We evaluate the performance of our DRL algorithm on a semi-closed greenhouse simulation located in New York City. The obtained computational results indicate that the proposed Q-learning based DRL framework yields higher cumulative returns. They also demonstrate that the proposed control technique consumes 61% lesser energy than deep deterministic policy gradient (DDPG) method.