Evading Anti-Phishing Models: A Field Note Documenting an Experience in the Machine Learning Security Evasion Competition 2022

Yang Gao, Benjamin Ampel, S. Samtani
{"title":"Evading Anti-Phishing Models: A Field Note Documenting an Experience in the Machine Learning Security Evasion Competition 2022","authors":"Yang Gao, Benjamin Ampel, S. Samtani","doi":"10.1145/3603507","DOIUrl":null,"url":null,"abstract":"Although machine learning-based anti-phishing detectors have provided promising results in phishing website detection, they remain vulnerable to evasion attacks. The Machine Learning Security Evasion Competition 2022 (MLSEC 2022) provides researchers and practitioners with the opportunity to deploy evasion attacks against anti-phishing machine learning models in real-world settings. In this field note, we share our experience participating in MLSEC 2022. We manipulated the source code of ten phishing HTML pages provided by the competition using obfuscation techniques to evade anti-phishing models. Our evasion attacks employing a benign overlap strategy achieved third place in the competition with 46 out of a potential 80 points. The results of our MLSEC 2022 performance can provide valuable insights for research seeking to robustify machine learning-based anti-phishing detectors.","PeriodicalId":202552,"journal":{"name":"Digital Threats: Research and Practice","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Threats: Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Although machine learning-based anti-phishing detectors have provided promising results in phishing website detection, they remain vulnerable to evasion attacks. The Machine Learning Security Evasion Competition 2022 (MLSEC 2022) provides researchers and practitioners with the opportunity to deploy evasion attacks against anti-phishing machine learning models in real-world settings. In this field note, we share our experience participating in MLSEC 2022. We manipulated the source code of ten phishing HTML pages provided by the competition using obfuscation techniques to evade anti-phishing models. Our evasion attacks employing a benign overlap strategy achieved third place in the competition with 46 out of a potential 80 points. The results of our MLSEC 2022 performance can provide valuable insights for research seeking to robustify machine learning-based anti-phishing detectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
规避反钓鱼模型:记录机器学习安全规避竞赛2022经验的现场笔记
尽管基于机器学习的反网络钓鱼检测器在网络钓鱼网站检测方面提供了有希望的结果,但它们仍然容易受到逃避攻击。机器学习安全规避竞赛2022 (MLSEC 2022)为研究人员和从业人员提供了在现实环境中部署针对反网络钓鱼机器学习模型的规避攻击的机会。在这篇现场笔记中,我们分享了参加MLSEC 2022的经验。我们利用混淆技术对大赛提供的10个网络钓鱼HTML页面的源代码进行了篡改,以规避反网络钓鱼模型。我们的闪避攻击采用良性重叠策略,在比赛中以46分(满分80分)获得第三名。我们的MLSEC 2022性能结果可以为寻求增强基于机器学习的反网络钓鱼检测器的研究提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal Inconsistencies are Normal in Windows Memory Dumps (too) InvesTEE: A TEE-supported Framework for Lawful Remote Forensic Investigations Does Cyber Insurance promote Cyber Security Best Practice? An Analysis based on Insurance Application Forms Unveiling Cyber Threat Actors: A Hybrid Deep Learning Approach for Behavior-based Attribution A Framework for Enhancing Social Media Misinformation Detection with Topical-Tactics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1