Image database clustering to improve exudate detection in color fundus images

B. Nagy, B. Antal, A. Hajdu
{"title":"Image database clustering to improve exudate detection in color fundus images","authors":"B. Nagy, B. Antal, A. Hajdu","doi":"10.1109/ISPA.2013.6703833","DOIUrl":null,"url":null,"abstract":"In this paper a novel approach to improve exudate detection in color fundus images is proposed. Image databases usually contain images with different characteristics, thus determining an optimal parameter setting of an algorithm is a challenging task. To overcome this problem we cluster the image databases. For each cluster an optimal parameter setting is determined for the same algorithm. We extract Haralick features from the image, and apply k-means clustering to obtain the clusters. We tested our approach on a publicly available database, where the proposed approach improved the performance of a state-of-the-art exudate detector.","PeriodicalId":425029,"journal":{"name":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2013.6703833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a novel approach to improve exudate detection in color fundus images is proposed. Image databases usually contain images with different characteristics, thus determining an optimal parameter setting of an algorithm is a challenging task. To overcome this problem we cluster the image databases. For each cluster an optimal parameter setting is determined for the same algorithm. We extract Haralick features from the image, and apply k-means clustering to obtain the clusters. We tested our approach on a publicly available database, where the proposed approach improved the performance of a state-of-the-art exudate detector.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像数据库聚类的彩色眼底图像渗出物检测方法
本文提出了一种改进彩色眼底图像渗出物检测的新方法。图像数据库通常包含具有不同特征的图像,因此确定算法的最佳参数设置是一项具有挑战性的任务。为了克服这个问题,我们对图像数据库进行了聚类。对于每个聚类,为相同的算法确定一个最优参数设置。我们从图像中提取Haralick特征,并应用k-means聚类来获得聚类。我们在一个公开可用的数据库上测试了我们的方法,其中提出的方法提高了最先进的渗出物检测器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can we date an artist's work from catalogue photographs? Exudate segmentation on retinal atlas space Evaluation of degraded images using adaptive Jensen-Shannon divergence Contrast-based surface saliency Coverage segmentation of thin structures by linear unmixing and local centre of gravity attraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1