On-Silicon Photonic Integrated Circuit toward On-chip Interconnection and Distributed Computing

N. Nishiyama, T. Amemiya
{"title":"On-Silicon Photonic Integrated Circuit toward On-chip Interconnection and Distributed Computing","authors":"N. Nishiyama, T. Amemiya","doi":"10.23919/VLSICircuits52068.2021.9492356","DOIUrl":null,"url":null,"abstract":"Heterogeneous material integration technology gives us freedom of material choices in both electronic and photonic devices. In this presentation, status, technology and characteristics of photonic devices in photonic integrated circuits (PICs) on Si (SOI) will be reviewed. Membrane (thin III-V film) PICs can realize low power consumption data transmission on Si substrate. This PICs can be applicable to on-chip interconnection to reduce power dissipation under higher speed transmission. 93 fJ/bit transmission with 20 Gbps has been demonstrated. Hybrid PICs were also demonstrated to realize 10-Tbps-class transceiver with low energy cost for distributed computing. This structure can integrate multiple function and many array devices in one chip. Also, by dense integration, some function of electronics can be moved to photonics part. This enables power consumption reduction.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous material integration technology gives us freedom of material choices in both electronic and photonic devices. In this presentation, status, technology and characteristics of photonic devices in photonic integrated circuits (PICs) on Si (SOI) will be reviewed. Membrane (thin III-V film) PICs can realize low power consumption data transmission on Si substrate. This PICs can be applicable to on-chip interconnection to reduce power dissipation under higher speed transmission. 93 fJ/bit transmission with 20 Gbps has been demonstrated. Hybrid PICs were also demonstrated to realize 10-Tbps-class transceiver with low energy cost for distributed computing. This structure can integrate multiple function and many array devices in one chip. Also, by dense integration, some function of electronics can be moved to photonics part. This enables power consumption reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向片上互连和分布式计算的硅光子集成电路
异质材料集成技术为电子器件和光子器件的材料选择提供了自由。本文综述了硅基光子集成电路(PICs)中光子器件的现状、技术和特点。薄膜(III-V薄膜)pic可以在Si衬底上实现低功耗的数据传输。这些pic可用于片上互连,以降低高速传输下的功耗。在20 Gbps的传输速率下,实现了93 fJ/bit的传输。混合PICs还演示了以低能量成本实现分布式计算的10tbps级收发器。这种结构可以在一个芯片上集成多种功能和多个阵列器件。同时,通过密集集成,一些电子功能可以转移到光电子部分。这可以降低功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PIMCA: A 3.4-Mb Programmable In-Memory Computing Accelerator in 28nm for On-Chip DNN Inference A 24–31 GHz Reference Oversampling ADPLL Achieving FoMjitter−N of -269.3 dB A 6.78 MHz Wireless Power Transfer System for Simultaneous Charging of Multiple Receivers with Maximum Efficiency using Adaptive Magnetic Field Distributor IC Enhanced Core Circuits for scaling DRAM: 0.7V VCC with Long Retention 138ms at 125°C and Random Row/Column Access Times Accelerated by 1.5ns A Sub-mW Dual-Engine ML Inference System-on-Chip for Complete End-to-End Face-Analysis at the Edge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1