Label-Related/Unrelated Topic Switching Model: A Partially Labeled Topic Model Handling Infinite Label-Unrelated Topics

Yasutoshi Ida, Takuma Nakamura, Takashi Matsumoto
{"title":"Label-Related/Unrelated Topic Switching Model: A Partially Labeled Topic Model Handling Infinite Label-Unrelated Topics","authors":"Yasutoshi Ida, Takuma Nakamura, Takashi Matsumoto","doi":"10.1109/ACPR.2013.163","DOIUrl":null,"url":null,"abstract":"We propose a Label-Related/Unrelated Topic Switching Model (LRU-TSM) based on Latent Dirichlet Allocation (LDA) for modeling a labeled corpus. In this model, each word is allocated to a label-related topic or a label-unrelated topic. Label-related topics utilize label information, and label-unrelated topics utilize the framework of Bayesian Nonparametrics, which can estimate the number of topics in posterior distributions. Our model handles label-related and -unrelated topics explicitly, in contrast to the earlier model, and improves the performances of applications to which is applied. Using real-world datasets, we show that our model outperforms the earlier model in terms of perplexity and efficiency for label prediction tasks that involve predicting labels for documents or pictures without labels.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a Label-Related/Unrelated Topic Switching Model (LRU-TSM) based on Latent Dirichlet Allocation (LDA) for modeling a labeled corpus. In this model, each word is allocated to a label-related topic or a label-unrelated topic. Label-related topics utilize label information, and label-unrelated topics utilize the framework of Bayesian Nonparametrics, which can estimate the number of topics in posterior distributions. Our model handles label-related and -unrelated topics explicitly, in contrast to the earlier model, and improves the performances of applications to which is applied. Using real-world datasets, we show that our model outperforms the earlier model in terms of perplexity and efficiency for label prediction tasks that involve predicting labels for documents or pictures without labels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
标签相关/不相关主题切换模型:处理无限标签无关主题的部分标记主题模型
提出了一种基于潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)的标签相关/无关主题切换模型(LRU-TSM)。在这个模型中,每个单词被分配到一个与标签相关的主题或一个与标签无关的主题。标签相关主题利用标签信息,标签不相关主题利用贝叶斯非参数框架,该框架可以估计后验分布中的主题数量。与早期的模型相比,我们的模型显式地处理与标签相关和不相关的主题,并提高了应用程序的性能。使用真实世界的数据集,我们表明我们的模型在标签预测任务的困惑度和效率方面优于早期的模型,这些任务涉及预测文档或没有标签的图片的标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Compensation of Radial Distortion by Minimizing Entropy of Histogram of Oriented Gradients A Robust and Efficient Minutia-Based Fingerprint Matching Algorithm Sclera Recognition - A Survey A Non-local Sparse Model for Intrinsic Images Classification Based on Boolean Algebra and Its Application to the Prediction of Recurrence of Liver Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1