Multi-aspect Diffusion Network Inference

Hao Huang, Ke‐qi Han, Beicheng Xu, Ting Gan
{"title":"Multi-aspect Diffusion Network Inference","authors":"Hao Huang, Ke‐qi Han, Beicheng Xu, Ting Gan","doi":"10.1145/3543507.3583228","DOIUrl":null,"url":null,"abstract":"To learn influence relationships between nodes in a diffusion network, most existing approaches resort to precise timestamps of historical node infections. The target network is customarily assumed as an one-aspect diffusion network, with homogeneous influence relationships. Nonetheless, tracing node infection timestamps is often infeasible due to high cost, and the type of influence relationships may be heterogeneous because of the diversity of propagation media. In this work, we study how to infer a multi-aspect diffusion network with heterogeneous influence relationships, using only node infection statuses that are more readily accessible in practice. Equipped with a probabilistic generative model, we iteratively conduct a posteriori, quantitative analysis on historical diffusion results of the network, and infer the structure and strengths of homogeneous influence relationships in each aspect. Extensive experiments on both synthetic and real-world networks are conducted, and the results verify the effectiveness and efficiency of our approach.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To learn influence relationships between nodes in a diffusion network, most existing approaches resort to precise timestamps of historical node infections. The target network is customarily assumed as an one-aspect diffusion network, with homogeneous influence relationships. Nonetheless, tracing node infection timestamps is often infeasible due to high cost, and the type of influence relationships may be heterogeneous because of the diversity of propagation media. In this work, we study how to infer a multi-aspect diffusion network with heterogeneous influence relationships, using only node infection statuses that are more readily accessible in practice. Equipped with a probabilistic generative model, we iteratively conduct a posteriori, quantitative analysis on historical diffusion results of the network, and infer the structure and strengths of homogeneous influence relationships in each aspect. Extensive experiments on both synthetic and real-world networks are conducted, and the results verify the effectiveness and efficiency of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多向扩散网络推理
为了了解扩散网络中节点之间的影响关系,大多数现有方法采用历史节点感染的精确时间戳。目标网络通常被假设为单向扩散网络,具有均匀的影响关系。然而,由于成本高,跟踪节点感染时间戳通常是不可行的,并且由于传播媒介的多样性,影响关系的类型可能是异构的。在这项工作中,我们研究了如何推断具有异质影响关系的多方面扩散网络,仅使用在实践中更容易获得的节点感染状态。利用概率生成模型,对网络的历史扩散结果进行后验、定量的迭代分析,推断出各方面同质影响关系的结构和强度。在合成网络和现实网络上进行了大量的实验,结果验证了我们方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CurvDrop: A Ricci Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing Learning to Simulate Crowd Trajectories with Graph Networks Word Sense Disambiguation by Refining Target Word Embedding Curriculum Graph Poisoning Optimizing Guided Traversal for Fast Learned Sparse Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1