Prediction of five-class finger flexion using ECoG signals

A. Elghrabawy, M. Wahed
{"title":"Prediction of five-class finger flexion using ECoG signals","authors":"A. Elghrabawy, M. Wahed","doi":"10.1109/CIBEC.2012.6473300","DOIUrl":null,"url":null,"abstract":"Brain Computer Interface (BCI) is one of the clinical applications that might restore communication to people with severe motor disabilities. Recording and analysis of electrophysiological brain signals is the base of BCI research and development. Electrocorticography (ECoG) is an invasive record to brain signals from electrode grids on the surface of the brain. ECoG signal makes possible localization of the source of neural signals with respect to certain brain functions due to its high spatial resolution. This study is a step towards exploring the usability of ECoG signals as a BCI input technique and a multidimensional BCI control. Signal processing and classification were validated to predict kinematic parameters for five-class finger flexion. The signal is provided by ECoG dataset from BCI competition IV. For features extraction we used shift invariant wavelet decomposition and multi-taper frequency spectrum. Multilayer perceptron and pace regression were used for classification. Results show that the predicted finger movement is highly correlated with movement states.","PeriodicalId":416740,"journal":{"name":"2012 Cairo International Biomedical Engineering Conference (CIBEC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Cairo International Biomedical Engineering Conference (CIBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBEC.2012.6473300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Brain Computer Interface (BCI) is one of the clinical applications that might restore communication to people with severe motor disabilities. Recording and analysis of electrophysiological brain signals is the base of BCI research and development. Electrocorticography (ECoG) is an invasive record to brain signals from electrode grids on the surface of the brain. ECoG signal makes possible localization of the source of neural signals with respect to certain brain functions due to its high spatial resolution. This study is a step towards exploring the usability of ECoG signals as a BCI input technique and a multidimensional BCI control. Signal processing and classification were validated to predict kinematic parameters for five-class finger flexion. The signal is provided by ECoG dataset from BCI competition IV. For features extraction we used shift invariant wavelet decomposition and multi-taper frequency spectrum. Multilayer perceptron and pace regression were used for classification. Results show that the predicted finger movement is highly correlated with movement states.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用ECoG信号预测五级手指屈曲
脑机接口(BCI)是恢复重度运动障碍患者沟通能力的临床应用之一。脑电生理信号的记录和分析是脑机接口研究和发展的基础。脑皮质电图(ECoG)是一种对大脑表面电极网格发出的大脑信号的侵入性记录。ECoG信号由于其高空间分辨率,使得神经信号来源相对于某些脑功能的定位成为可能。这项研究是探索ECoG信号作为脑机接口输入技术和多维脑机接口控制的可用性的一步。验证了信号处理和分类预测五级手指屈曲的运动学参数。信号由来自BCI competition IV的ECoG数据集提供。对于特征提取,我们使用平移不变小波分解和多锥度频谱。采用多层感知器和速度回归进行分类。结果表明,预测的手指运动与运动状态高度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D automated colon segmentation for efficient polyp detection Pectoral muscle identification in mammograms for Computer Aided Diagnosis of breast cancer High performance multi-dimensional (2D/3D) FFT-Shift implementation on Graphics Processing Units (GPUs) A system dynamics based model for medical equipment maintenance procedure planning in developing countries Accurate analysis of cardiac tagged MRI using combined HARP and optical flow tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1