Simultaneous Object Recognition and Localization in Image Collections

Shao-Chuan Wang, Y. Wang
{"title":"Simultaneous Object Recognition and Localization in Image Collections","authors":"Shao-Chuan Wang, Y. Wang","doi":"10.1109/AVSS.2010.47","DOIUrl":null,"url":null,"abstract":"This papers presents a weakly supervised method to simultaneouslyaddress object localization and recognitionproblems. Unlike prior work using exhaustive search methodssuch as sliding windows, we propose to learn categoryand image-specific visual words in image collections by extractingdiscriminating feature information via two differenttypes of support vector machines: the standard L2-regularized L1-loss SVM, and the one with L1 regularizationand L2 loss. The selected visual words are used toconstruct visual attention maps, which provide descriptiveinformation for each object category. To preserve local spatialinformation, we further refine these maps by Gaussiansmoothing and cross bilateral filtering, and thus both appearanceand spatial information can be utilized for visualcategorization applications. Our method is not limited toany specific type of image descriptors, or any particularcodebook learning and feature encoding techniques. In thispaper, we conduct preliminary experiments on a subset ofthe Caltech-256 dataset using bag-of-feature (BOF) modelswith SIFT descriptors. We show that the use of our visual attentionmaps improves the recognition performance, whilethe one selected by L1-regularized L2-loss SVMs exhibitsthe best recognition and localization results.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This papers presents a weakly supervised method to simultaneouslyaddress object localization and recognitionproblems. Unlike prior work using exhaustive search methodssuch as sliding windows, we propose to learn categoryand image-specific visual words in image collections by extractingdiscriminating feature information via two differenttypes of support vector machines: the standard L2-regularized L1-loss SVM, and the one with L1 regularizationand L2 loss. The selected visual words are used toconstruct visual attention maps, which provide descriptiveinformation for each object category. To preserve local spatialinformation, we further refine these maps by Gaussiansmoothing and cross bilateral filtering, and thus both appearanceand spatial information can be utilized for visualcategorization applications. Our method is not limited toany specific type of image descriptors, or any particularcodebook learning and feature encoding techniques. In thispaper, we conduct preliminary experiments on a subset ofthe Caltech-256 dataset using bag-of-feature (BOF) modelswith SIFT descriptors. We show that the use of our visual attentionmaps improves the recognition performance, whilethe one selected by L1-regularized L2-loss SVMs exhibitsthe best recognition and localization results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像集合中的同步目标识别与定位
提出了一种同时解决目标定位和识别问题的弱监督方法。与之前使用穷举搜索方法(如滑动窗口)的工作不同,我们提出通过两种不同类型的支持向量机(标准L2正则化L1损失支持向量机和具有L1正则化和L2损失支持向量机)提取判别特征信息来学习图像集合中的类别和图像特定视觉词。选择的视觉词用于构建视觉注意图,它为每个对象类别提供描述性信息。为了保留局部空间信息,我们通过高斯平滑和交叉双边滤波进一步细化这些地图,从而将外观和空间信息都用于视觉分类应用。我们的方法不局限于任何特定类型的图像描述符,或任何特定的码本学习和特征编码技术。在本文中,我们使用带有SIFT描述符的特征袋(BOF)模型对Caltech-256数据集的一个子集进行了初步实验。我们的研究表明,使用我们的视觉注意图提高了识别性能,而由l1正则化l2损失支持向量机选择的视觉注意图显示出最好的识别和定位结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1