Design of High Performance Quaternary Adders

K. V. Patel, K. Gurumurthy
{"title":"Design of High Performance Quaternary Adders","authors":"K. V. Patel, K. Gurumurthy","doi":"10.1109/ISMVL.2011.65","DOIUrl":null,"url":null,"abstract":"Design of the binary logic circuits is limited by the requirement of the interconnections. A possible solution could be arrived at by using a larger set of signals over the same chip area. Multiple-valued logic (MVL) designs are gaining importance from that perspective. This paper presents two types of multiple-valued full adder circuits, implemented in Multiple-Valued voltage-Mode Logic (MV-VML). First type is designed using one hot encoding and barrel shifter. Second full adder circuit is designed by converting the quaternary logic in to unique code, which enables to implement circuit with reduced hard ware. Sum and carry are processed in two separate blocks, controlled by code generator unit. The design is targeted for the 0.18 µm CMOS technology and verification of the design is done through Synopsis HSPICE and COSMOSCOPE Tools. Area of the designed circuits is less than the corresponding binary circuits and quaternary adders because number of transistors used are less.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"37 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Design of the binary logic circuits is limited by the requirement of the interconnections. A possible solution could be arrived at by using a larger set of signals over the same chip area. Multiple-valued logic (MVL) designs are gaining importance from that perspective. This paper presents two types of multiple-valued full adder circuits, implemented in Multiple-Valued voltage-Mode Logic (MV-VML). First type is designed using one hot encoding and barrel shifter. Second full adder circuit is designed by converting the quaternary logic in to unique code, which enables to implement circuit with reduced hard ware. Sum and carry are processed in two separate blocks, controlled by code generator unit. The design is targeted for the 0.18 µm CMOS technology and verification of the design is done through Synopsis HSPICE and COSMOSCOPE Tools. Area of the designed circuits is less than the corresponding binary circuits and quaternary adders because number of transistors used are less.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能四元加法器的设计
二进制逻辑电路的设计受到互连要求的限制。一个可能的解决方案是在相同的芯片面积上使用更大的信号集。从这个角度来看,多值逻辑(MVL)设计越来越重要。本文提出了两种多值全加法器电路,采用多值电压模式逻辑(MV-VML)实现。第一种是用一个热编码和桶移位器设计的。第二全加法器电路是通过将四元逻辑转换成唯一码来设计的,这样可以减少硬件的使用。和和进位在两个独立的块中处理,由代码生成单元控制。该设计针对0.18µm CMOS技术,并通过Synopsis HSPICE和COSMOSCOPE Tools对设计进行了验证。由于所用晶体管数量较少,所设计电路的面积小于相应的二进制电路和四进制加法器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Complexity of Quantum Oracles for Ternary Grover Algorithm for Graph Coloring Invitation to Clone Theory with Partial Clones and Hyperclones From Truth Tables to Programming Languages: Progress in the Design of Reversible Circuits A Graph-Based Approach to Designing Multiple-Valued Arithmetic Algorithms The Lattice of the Clones of Self-Dual Functions in Three-Valued Logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1