Discrete-time optimal control scheme based on Q-learning algorithm

Qinglai Wei, Derong Liu, Ruizhuo Song
{"title":"Discrete-time optimal control scheme based on Q-learning algorithm","authors":"Qinglai Wei, Derong Liu, Ruizhuo Song","doi":"10.1109/ICICIP.2016.7885888","DOIUrl":null,"url":null,"abstract":"This paper is concerned with optimal control problems of discrete-time nonlinear systems via a novel Q-learning algorithm. In the newly developed Q-learning algorithm, the iterative Q function in each iteration is required to update on the whole state and control spaces, instead of being updated by a single state and control pair. A new convergence criterion of the corresponding Q-learning algorithm is presented, where the traditional constraints for the learning rates of Q-learning algorithms is relaxed. Finally, simulation results are provided to exemplify the good performance of the developed algorithm.","PeriodicalId":226381,"journal":{"name":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2016.7885888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is concerned with optimal control problems of discrete-time nonlinear systems via a novel Q-learning algorithm. In the newly developed Q-learning algorithm, the iterative Q function in each iteration is required to update on the whole state and control spaces, instead of being updated by a single state and control pair. A new convergence criterion of the corresponding Q-learning algorithm is presented, where the traditional constraints for the learning rates of Q-learning algorithms is relaxed. Finally, simulation results are provided to exemplify the good performance of the developed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于q -学习算法的离散时间最优控制方案
本文利用一种新的q -学习算法研究离散非线性系统的最优控制问题。在新开发的Q-learning算法中,每次迭代中的迭代Q函数需要在整个状态空间和控制空间上更新,而不是由单个状态和控制对更新。提出了相应的q -学习算法的一个新的收敛准则,放宽了传统的q -学习算法的学习率约束。最后给出了仿真结果,验证了该算法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New results on stability and stabilization analyses for T-S fuzzy systems with distributed time-delay under imperfect premise matching Nonlinear interval regression analysis based on spline fuzzy model with interval coefficients Detection of abnormal process behavior in copper solvent extraction by Hotelling T2 and squared prediction error control chart A using of just-in-time learning based data driven method in continuous stirred tank heater Study on a density peak based clustering algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1