Menuka Perera Jayasuriya Kuranage, L. Nuaymi, A. Bouabdallah, Thomas Ferrandiz, P. Bertin
{"title":"Deep learning based resource forecasting for 5G core network scaling in Kubernetes environment","authors":"Menuka Perera Jayasuriya Kuranage, L. Nuaymi, A. Bouabdallah, Thomas Ferrandiz, P. Bertin","doi":"10.1109/NetSoft54395.2022.9844056","DOIUrl":null,"url":null,"abstract":"5G networks are moving towards cloudification which gives the telecom operators the flexibility to manage their networks efficiently and cost-effectively. Scaling network functions on demand is one of the advantages of using container-based deployment in cloud environments. With the continuously changing network traffic patterns due to the emerging new 5G use cases, there is a need for novel automated network resources management approach in cloud-native environments. Considering the scale and the complexity of the 5G network, managing resources is a challenge. To address this, we propose a deep learning-based resource usage forecasting approach that provides useful insights for decision-making in containerized Network Function (CNF) scaling for the Kubernetes environment. Kubernetes is a container orchestration tool that becoming popular among Telecom operators due to its simplicity. We implemented a testbed in the Kubernetes environment to generate a dataset closer to real-world data for deep learning model training and evaluated the best-performing model for resource usage forecasting. We benchmarked our approach against another deep learning-based resource usage forecasting approach which proved our method can provide a highly accurate forecast for further horizons.","PeriodicalId":125799,"journal":{"name":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft54395.2022.9844056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
5G networks are moving towards cloudification which gives the telecom operators the flexibility to manage their networks efficiently and cost-effectively. Scaling network functions on demand is one of the advantages of using container-based deployment in cloud environments. With the continuously changing network traffic patterns due to the emerging new 5G use cases, there is a need for novel automated network resources management approach in cloud-native environments. Considering the scale and the complexity of the 5G network, managing resources is a challenge. To address this, we propose a deep learning-based resource usage forecasting approach that provides useful insights for decision-making in containerized Network Function (CNF) scaling for the Kubernetes environment. Kubernetes is a container orchestration tool that becoming popular among Telecom operators due to its simplicity. We implemented a testbed in the Kubernetes environment to generate a dataset closer to real-world data for deep learning model training and evaluated the best-performing model for resource usage forecasting. We benchmarked our approach against another deep learning-based resource usage forecasting approach which proved our method can provide a highly accurate forecast for further horizons.