{"title":"Self-organized stochastic tipping in slow-fast dynamical systems","authors":"Mathias Linkerhand, C. Gros","doi":"10.2140/MEMOCS.2013.1.129","DOIUrl":null,"url":null,"abstract":"Polyhomeostatic adaption occurs when evolving systems try to achieve a target distribution function for certain dynamical parameters, a generalization of the notion of homeostasis. Here we consider a single rate encoding leaky integrator neuron model driven by white noise, adapting slowly its internal parameters, the threshold and the gain, in order to achieve a given target distribution for its time-average firing rate. For the case of sparse encoding, when the target firing-rated distribution is bimodal, we observe the occurrence of spontaneous quasi-periodic adaptive oscillations resulting from fast transition between two quasi-stationary attractors. We interpret this behavior as self-organized stochastic tipping, with noise driving the escape from the quasi-stationary attractors.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/MEMOCS.2013.1.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Polyhomeostatic adaption occurs when evolving systems try to achieve a target distribution function for certain dynamical parameters, a generalization of the notion of homeostasis. Here we consider a single rate encoding leaky integrator neuron model driven by white noise, adapting slowly its internal parameters, the threshold and the gain, in order to achieve a given target distribution for its time-average firing rate. For the case of sparse encoding, when the target firing-rated distribution is bimodal, we observe the occurrence of spontaneous quasi-periodic adaptive oscillations resulting from fast transition between two quasi-stationary attractors. We interpret this behavior as self-organized stochastic tipping, with noise driving the escape from the quasi-stationary attractors.