{"title":"Spectrum Sensing and Primary User Localization in Cognitive Radio Networks via Sparsity","authors":"Lanchao Liu, Zhu Han, Zhiqiang Wu, Lijun Qian","doi":"10.4108/ws.1.1.e2","DOIUrl":null,"url":null,"abstract":"The theory of compressive sensing (CS) has been employed to detect available spectrum resource in cognitive radio (CR) networks recently. Capitalizing on the spectrum resource underutilization and spatial sparsity of primary user (PU) locations, CS enables the identification of the unused spectrum bands and PU locations at a low sampling rate. Although CS has been studied in the cooperative spectrum sensing mechanism in which CR nodes work collaboratively to accomplish the spectrum sensing and PU localization task, many important issues remain unsettled. Does the designed compressive spectrum sensing mechanism satisfy the Restricted Isometry Property, which guarantees a successful recovery of the original sparse signal? Can the spectrum sensing results help the localization of PUs? What are the characteristics of localization errors? To answer those questions, we try to justify the applicability of the CS theory to the compressive spectrum sensing framework in this paper, and propose a design of PU localization utilizing the spectrum usage information. The localization error is analyzed by the Cramér-Rao lower bound, which can be exploited to improve the localization performance. Detail analysis and simulations are presented to support the claims and demonstrate the efficacy and efficiency of the proposed mechanism. Received on 30 September 2013; accepted on 14 November 2013; published on 11 April 2014","PeriodicalId":288158,"journal":{"name":"EAI Endorsed Trans. Wirel. Spectr.","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Wirel. Spectr.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ws.1.1.e2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The theory of compressive sensing (CS) has been employed to detect available spectrum resource in cognitive radio (CR) networks recently. Capitalizing on the spectrum resource underutilization and spatial sparsity of primary user (PU) locations, CS enables the identification of the unused spectrum bands and PU locations at a low sampling rate. Although CS has been studied in the cooperative spectrum sensing mechanism in which CR nodes work collaboratively to accomplish the spectrum sensing and PU localization task, many important issues remain unsettled. Does the designed compressive spectrum sensing mechanism satisfy the Restricted Isometry Property, which guarantees a successful recovery of the original sparse signal? Can the spectrum sensing results help the localization of PUs? What are the characteristics of localization errors? To answer those questions, we try to justify the applicability of the CS theory to the compressive spectrum sensing framework in this paper, and propose a design of PU localization utilizing the spectrum usage information. The localization error is analyzed by the Cramér-Rao lower bound, which can be exploited to improve the localization performance. Detail analysis and simulations are presented to support the claims and demonstrate the efficacy and efficiency of the proposed mechanism. Received on 30 September 2013; accepted on 14 November 2013; published on 11 April 2014