{"title":"HMMER Performance Model for Multicore Architectures","authors":"S. Isaza, Ernst Houtgast, G. Gaydadjiev","doi":"10.1109/DSD.2011.111","DOIUrl":null,"url":null,"abstract":"Exponential growth in biological sequence data combined with the computationally intensive nature of bioinformatics applications results in a continuously rising demand for processing power. In this paper, we propose a performance model that captures the behavior and performance scalability of HMMER, a bioinformatics application that identifies similarities between protein sequences and a protein family model. With our analytical model, the optimal master-worker ratio for a user scenario can be estimated. The model is evaluated and is found accurate with less than 2% error. We applied our model to a widely used heterogeneous multicore, the Cell BE, using the PPE and SPEs as master and workers respectively. Experimental results show that for the current parallelization strategy, the I/O speed at which the database is read from disk and the inputs pre-processing are the two most limiting factors in the Cell BE case.","PeriodicalId":267187,"journal":{"name":"2011 14th Euromicro Conference on Digital System Design","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th Euromicro Conference on Digital System Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2011.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Exponential growth in biological sequence data combined with the computationally intensive nature of bioinformatics applications results in a continuously rising demand for processing power. In this paper, we propose a performance model that captures the behavior and performance scalability of HMMER, a bioinformatics application that identifies similarities between protein sequences and a protein family model. With our analytical model, the optimal master-worker ratio for a user scenario can be estimated. The model is evaluated and is found accurate with less than 2% error. We applied our model to a widely used heterogeneous multicore, the Cell BE, using the PPE and SPEs as master and workers respectively. Experimental results show that for the current parallelization strategy, the I/O speed at which the database is read from disk and the inputs pre-processing are the two most limiting factors in the Cell BE case.