Vehicle detection from low quality aerial LIDAR data

Bo Yang, Pramod Sharma, R. Nevatia
{"title":"Vehicle detection from low quality aerial LIDAR data","authors":"Bo Yang, Pramod Sharma, R. Nevatia","doi":"10.1109/WACV.2011.5711551","DOIUrl":null,"url":null,"abstract":"In this paper we propose a vehicle detection framework on low resolution aerial range data. Our system consists of three steps: data mapping, 2D vehicle detection and postprocessing. First, we map the range data into 2D grayscale images by using the depth information only. For this purpose we propose a novel local ground plane estimation method, and the estimated ground plane is further refined by a global refinement process. Then we compute the depth value of missing points (points for which no depth information is available) by an effective interpolation method. In the second step, to train a classifier for the vehicles, we describe a method to generate more training examples from very few training annotations and adopt the fast cascade Adaboost approach for detecting vehicles in 2D grayscale images. Finally, in post-processing step we design a novel method to detect some vehicles which are comprised of clusters of missing points. We evaluate our method on real aerial data and the experiments demonstrate the effectiveness of our approach.","PeriodicalId":424724,"journal":{"name":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2011.5711551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper we propose a vehicle detection framework on low resolution aerial range data. Our system consists of three steps: data mapping, 2D vehicle detection and postprocessing. First, we map the range data into 2D grayscale images by using the depth information only. For this purpose we propose a novel local ground plane estimation method, and the estimated ground plane is further refined by a global refinement process. Then we compute the depth value of missing points (points for which no depth information is available) by an effective interpolation method. In the second step, to train a classifier for the vehicles, we describe a method to generate more training examples from very few training annotations and adopt the fast cascade Adaboost approach for detecting vehicles in 2D grayscale images. Finally, in post-processing step we design a novel method to detect some vehicles which are comprised of clusters of missing points. We evaluate our method on real aerial data and the experiments demonstrate the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于低质量航空激光雷达数据的车辆检测
本文提出了一种基于低分辨率航拍距离数据的车辆检测框架。我们的系统包括三个步骤:数据映射、二维车辆检测和后处理。首先,仅利用深度信息将距离数据映射为二维灰度图像。为此,我们提出了一种新的局部地平面估计方法,并通过全局精化过程对估计的地平面进行进一步精化。然后通过一种有效的插值方法计算缺失点(没有深度信息的点)的深度值。在第二步中,为了训练车辆的分类器,我们描述了一种从很少的训练注释中生成更多训练示例的方法,并采用快速级联Adaboost方法来检测2D灰度图像中的车辆。最后,在后处理步骤中,我们设计了一种新的方法来检测一些由缺失点组成的车辆。在实际的航空数据上对该方法进行了验证,实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking planes with Time of Flight cameras and J-linkage Multi-modal visual concept classification of images via Markov random walk over tags Real-time illumination-invariant motion detection in spatio-temporal image volumes An evaluation of bags-of-words and spatio-temporal shapes for action recognition Illumination change compensation techniques to improve kinematic tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1