An Efficient and Speedy approach for Hierarchical Clustering Using Complete Linkage method

P. Banerjee, A. Chakrabarti, T. K. Ballabh
{"title":"An Efficient and Speedy approach for Hierarchical Clustering Using Complete Linkage method","authors":"P. Banerjee, A. Chakrabarti, T. K. Ballabh","doi":"10.1109/ICECCT56650.2023.10179708","DOIUrl":null,"url":null,"abstract":"In recent days to deal with the major problem of increasing data size, Clustering is a highly useful tool that not only helps in shrinking the dataset by grouping them into clusters but also finds hidden information from the unlabeled data. The Complete Linkage algorithm is a highly preferred distance-based Hierarchical Clustering algorithm that provides compact clusters but suffers from the disadvantage of high convergence time. This algorithm needs the entire dataset in advance to take a clustering decision and hence is unsuitable for “on the fly” data clustering. This paper presents a two-staged partially incremental Complete Linkage Clustering algorithm that partially clusters data alongside the collection. The proposed method without compromising the space complexity reduces a lot of redundant distance computations thereby reducing the runtime of the algorithm to a much lower value. Although the clustering result may slightly deviate from the original Complete Linkage algorithm, the characteristics of the Complete Linkage Clusters are always met in all scenarios under any given threshold. The advantage of this algorithm over the existing methods has been verified experimentally.","PeriodicalId":180790,"journal":{"name":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT56650.2023.10179708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent days to deal with the major problem of increasing data size, Clustering is a highly useful tool that not only helps in shrinking the dataset by grouping them into clusters but also finds hidden information from the unlabeled data. The Complete Linkage algorithm is a highly preferred distance-based Hierarchical Clustering algorithm that provides compact clusters but suffers from the disadvantage of high convergence time. This algorithm needs the entire dataset in advance to take a clustering decision and hence is unsuitable for “on the fly” data clustering. This paper presents a two-staged partially incremental Complete Linkage Clustering algorithm that partially clusters data alongside the collection. The proposed method without compromising the space complexity reduces a lot of redundant distance computations thereby reducing the runtime of the algorithm to a much lower value. Although the clustering result may slightly deviate from the original Complete Linkage algorithm, the characteristics of the Complete Linkage Clusters are always met in all scenarios under any given threshold. The advantage of this algorithm over the existing methods has been verified experimentally.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种高效快速的全链接分层聚类方法
近年来,在处理不断增长的数据量的主要问题时,聚类是一个非常有用的工具,它不仅可以通过将数据分组成簇来帮助缩小数据集,而且还可以从未标记的数据中发现隐藏的信息。完全链接算法是一种非常受欢迎的基于距离的分层聚类算法,它提供了紧凑的聚类,但缺点是收敛时间长。该算法需要提前对整个数据集进行聚类决策,因此不适合“动态”数据聚类。本文提出了一种两阶段部分增量的完全链接聚类算法,该算法将数据与集合一起部分聚类。该方法在不影响空间复杂度的前提下,减少了大量的冗余距离计算,从而大大降低了算法的运行时间。虽然聚类结果可能与原始的完全联动算法略有偏差,但在任何给定阈值下的所有场景下,都能满足完全联动算法的特征。实验验证了该算法相对于现有方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model of Markovian Queue with Catastrophe, Restoration and Balking Nibble Based Two Bit Invert Coding Technique for Serial Network on Chip Links Hesitant Triangular Fuzzy Dombi Operators and Its Applications Fuel Cost Optimization of Coal-Fired Power Plants using Coal Blending Proportions An Efficient Classification for Light Motor Vehicles using CatBoost Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1