C S Atwood, I R James, U Keil, N K Roberts, P E Hartmann
{"title":"Circadian changes in salivary constituents and conductivity in women and men.","authors":"C S Atwood, I R James, U Keil, N K Roberts, P E Hartmann","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian rhythms in salivary [glucose], [Na+], [K+] and conductivity were measured in 2 age groups of men (men A, 20-45 years and men B, 46-60 years) and 8 different states of fertility in women (normally menstruating, taking oral contraceptives, pregnant, lactational amenorrhea, lactational amenorrhea and taking oral contraceptives, lactating and menstruating, menopausal, and post-menopausal). Unstimulated whole saliva (2-3 ml) was collected every 3 h over a 48 h span. Analysis of Spearman Rank Correlations indicated significant circadian rhythms (significant positive coefficients) for all groups of [Na+] (mean = 0.577 +/- 0.040) and conductivity (mean = 0.410 +/- 0.050). There was no evidence of differences in prominence of rhythm across groups for [Na+] and conductivity. [K+] showed less evidence of rhythms and much greater variability between groups (mean correlation coefficient = 0.198 +/- 0.055). Rhythms in [glucose] (mean correlation coefficient = 0.409 +/- 0.051) were evident in all groups except men B (0.016), menopausal women (0.151) and post-menopausal women (0.310). Model analysis of the data showed no discernible rhythmic trend with age for either conductivity, [Na+] or [K+], where any differences were explainable by the group characteristics. The rhythm in [glucose] showed a significant weakening with age over all groups (F-ratio = 7.46**), and was different between men A and men B (F-ratio = 6.95**). It was concluded that circadian rhythms were present in whole unstimulated saliva for conductivity and [Na+] and that these rhythms were independent of reproductive state, whereas circadian rhythms in [K+] were dependent on reproductive state. Circadian rhythms for [glucose] were dependent on age. The loss of a rhythm in [glucose] with age indicates that glucose, Na+ and K+ are not linked in their entry into saliva. The influence of entry and reabsorption on the final concentrations of glucose, Na+ and K+ in saliva is discussed.</p>","PeriodicalId":75705,"journal":{"name":"Chronobiologia","volume":"18 4","pages":"125-40"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronobiologia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Circadian rhythms in salivary [glucose], [Na+], [K+] and conductivity were measured in 2 age groups of men (men A, 20-45 years and men B, 46-60 years) and 8 different states of fertility in women (normally menstruating, taking oral contraceptives, pregnant, lactational amenorrhea, lactational amenorrhea and taking oral contraceptives, lactating and menstruating, menopausal, and post-menopausal). Unstimulated whole saliva (2-3 ml) was collected every 3 h over a 48 h span. Analysis of Spearman Rank Correlations indicated significant circadian rhythms (significant positive coefficients) for all groups of [Na+] (mean = 0.577 +/- 0.040) and conductivity (mean = 0.410 +/- 0.050). There was no evidence of differences in prominence of rhythm across groups for [Na+] and conductivity. [K+] showed less evidence of rhythms and much greater variability between groups (mean correlation coefficient = 0.198 +/- 0.055). Rhythms in [glucose] (mean correlation coefficient = 0.409 +/- 0.051) were evident in all groups except men B (0.016), menopausal women (0.151) and post-menopausal women (0.310). Model analysis of the data showed no discernible rhythmic trend with age for either conductivity, [Na+] or [K+], where any differences were explainable by the group characteristics. The rhythm in [glucose] showed a significant weakening with age over all groups (F-ratio = 7.46**), and was different between men A and men B (F-ratio = 6.95**). It was concluded that circadian rhythms were present in whole unstimulated saliva for conductivity and [Na+] and that these rhythms were independent of reproductive state, whereas circadian rhythms in [K+] were dependent on reproductive state. Circadian rhythms for [glucose] were dependent on age. The loss of a rhythm in [glucose] with age indicates that glucose, Na+ and K+ are not linked in their entry into saliva. The influence of entry and reabsorption on the final concentrations of glucose, Na+ and K+ in saliva is discussed.