Transfer Learning to Detect Age From Handwriting

Najla AL-Qawasmeh, C. Suen
{"title":"Transfer Learning to Detect Age From Handwriting","authors":"Najla AL-Qawasmeh, C. Suen","doi":"10.54364/aaiml.2022.1126","DOIUrl":null,"url":null,"abstract":"Handwriting analysis is the science of determining an individual’s personality from his or her handwriting by assessing features such as slant, pen pressure, word spacing, and other factors. Handwriting analysis has a wide range of uses and applications, including dating and socialising, roommates and landlords, business and professional, employee hiring, and human resources. This study used the ResNet and GoogleNet CNN architectures as fixed feature extractors from handwriting samples. SVM was used to classify the writer’s gender and age based on the extracted features. We built an Arabic dataset named FSHS to analyse and test the proposed system. In the gender detection system, applying the automatic feature extraction method to the FSHS dataset produced accuracy rates of 84.9% and 82.2% using ResNet and GoogleNet, respectively. While the age detection system using the automatic feature extraction method achieved accuracy rates of 69.7% and 61.1% using ResNet and GoogleNet, respectively","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54364/aaiml.2022.1126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Handwriting analysis is the science of determining an individual’s personality from his or her handwriting by assessing features such as slant, pen pressure, word spacing, and other factors. Handwriting analysis has a wide range of uses and applications, including dating and socialising, roommates and landlords, business and professional, employee hiring, and human resources. This study used the ResNet and GoogleNet CNN architectures as fixed feature extractors from handwriting samples. SVM was used to classify the writer’s gender and age based on the extracted features. We built an Arabic dataset named FSHS to analyse and test the proposed system. In the gender detection system, applying the automatic feature extraction method to the FSHS dataset produced accuracy rates of 84.9% and 82.2% using ResNet and GoogleNet, respectively. While the age detection system using the automatic feature extraction method achieved accuracy rates of 69.7% and 61.1% using ResNet and GoogleNet, respectively
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从笔迹中检测年龄的迁移学习
笔迹分析是一门通过评估笔迹的倾斜度、笔压、字间距和其他因素来判断一个人性格的科学。笔迹分析具有广泛的用途和应用,包括约会和社交、室友和房东、商业和专业、员工招聘和人力资源。本研究使用ResNet和GoogleNet CNN架构作为手写样本的固定特征提取器。基于提取的特征,使用支持向量机对作者的性别和年龄进行分类。我们建立了一个名为FSHS的阿拉伯语数据集来分析和测试所提出的系统。在性别检测系统中,将自动特征提取方法应用于FSHS数据集,在ResNet和GoogleNet上的准确率分别为84.9%和82.2%。而采用自动特征提取方法的年龄检测系统在ResNet和GoogleNet上的准确率分别达到了69.7%和61.1%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FishRecGAN: An End to End GAN Based Network for Fisheye Rectification and Calibration Should ChatGPT and Bard Share Revenue with Their Data Providers? A New Business Model for the AI Era Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid CNN-RNN A Comparison of Methods for Neural Network Aggregation One-class Damage Detector Using Deeper Fully Convolutional Data Descriptions for Civil Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1