{"title":"Hemolytic properties of lytic peptides active against the sporozoites of Cryptosporidium parvum.","authors":"M J Arrowood, J M Jaynes, M C Healey","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cryptosporidium parvum is a protozoan parasite that causes mildto-severe diarrheal disease in animals and humans. There are currently no effective chemotherapeutic agents available for the treatment of cryptosporidiosis. Recently, small, naturally occurring antimicrobial lytic peptides with anti-protozoal activities have been described. In the present study, we compare the in vitro anti-cryptosporidial activities of synthetic lytic peptides and their corresponding hemolytic activities after a 30 min incubation at 37 degrees C. Sporozoite viability was assessed microscopically by the uptake of the vital dyes fluorescein diacetate (FDA) and propidium iodide (PI). Hemolysis was assessed spectrophotometrically by the release of soluble hemoglobulin. The most active peptide, Hecate-1, reduced sporozoite viability by 85.5% with a corresponding hemolytic activity of 21.5% at a concentration of 10 microM.</p>","PeriodicalId":22758,"journal":{"name":"The Journal of protozoology","volume":"38 6","pages":"161S-163S"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of protozoology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cryptosporidium parvum is a protozoan parasite that causes mildto-severe diarrheal disease in animals and humans. There are currently no effective chemotherapeutic agents available for the treatment of cryptosporidiosis. Recently, small, naturally occurring antimicrobial lytic peptides with anti-protozoal activities have been described. In the present study, we compare the in vitro anti-cryptosporidial activities of synthetic lytic peptides and their corresponding hemolytic activities after a 30 min incubation at 37 degrees C. Sporozoite viability was assessed microscopically by the uptake of the vital dyes fluorescein diacetate (FDA) and propidium iodide (PI). Hemolysis was assessed spectrophotometrically by the release of soluble hemoglobulin. The most active peptide, Hecate-1, reduced sporozoite viability by 85.5% with a corresponding hemolytic activity of 21.5% at a concentration of 10 microM.