Measuring Biometric Sample Quality in Terms of Biometric Information

R. Youmaran, Andy Adler
{"title":"Measuring Biometric Sample Quality in Terms of Biometric Information","authors":"R. Youmaran, Andy Adler","doi":"10.1109/BCC.2006.4341618","DOIUrl":null,"url":null,"abstract":"This paper develops a new approach to understand and measure variations in biometric sample quality. We begin with the intuition that degradations to a biometric sample will reduce the amount of identifiable information available. In order to measure the amount of identifiable information, we define biometric information as the decrease in uncertainty about the identity of a person due to a set of biometric measurements. We then show that the biometric information for a person may be calculated by the relative entropy D(p||q) between the population feature distribution q and the person's feature distribution p. The biometric information for a system is the mean D(p||q) for all persons in the population. In order to practically measure D(p||q) with limited data samples, we introduce an algorithm which regularizes a Gaussian model of the feature covariances. An example of this method is shown for PCA, Fisher linear discriminant (FLD) and ICA based face recognition, with biometric information calculated to be 45.0 bits (PCA), 37.0 bits (FLD), 39.0 bits (ICA) and 55.6 bits (fusion of PCA and FLD features). Based on this definition of biometric information, we simulate degradations of biometric images and calculate the resulting decrease in biometric information. Results show a quasi-linear decrease for small levels of blur with an asymptotic behavior at larger blur.","PeriodicalId":226152,"journal":{"name":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2006.4341618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper develops a new approach to understand and measure variations in biometric sample quality. We begin with the intuition that degradations to a biometric sample will reduce the amount of identifiable information available. In order to measure the amount of identifiable information, we define biometric information as the decrease in uncertainty about the identity of a person due to a set of biometric measurements. We then show that the biometric information for a person may be calculated by the relative entropy D(p||q) between the population feature distribution q and the person's feature distribution p. The biometric information for a system is the mean D(p||q) for all persons in the population. In order to practically measure D(p||q) with limited data samples, we introduce an algorithm which regularizes a Gaussian model of the feature covariances. An example of this method is shown for PCA, Fisher linear discriminant (FLD) and ICA based face recognition, with biometric information calculated to be 45.0 bits (PCA), 37.0 bits (FLD), 39.0 bits (ICA) and 55.6 bits (fusion of PCA and FLD features). Based on this definition of biometric information, we simulate degradations of biometric images and calculate the resulting decrease in biometric information. Results show a quasi-linear decrease for small levels of blur with an asymptotic behavior at larger blur.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生物特征信息的生物特征样品质量测量
本文开发了一种新的方法来理解和测量生物特征样品质量的变化。我们从直觉开始,生物识别样本的退化将减少可用的可识别信息的数量。为了测量可识别信息的数量,我们将生物特征信息定义为由于一组生物特征测量而减少的关于一个人身份的不确定性。然后,我们证明了一个人的生物特征信息可以通过群体特征分布q和个人特征分布p之间的相对熵D(p||q)来计算。系统的生物特征信息是群体中所有人的平均D(p||q)。为了在有限的数据样本下实际测量D(p||q),我们引入了一种正则化特征协方差高斯模型的算法。以基于PCA、Fisher线性判别法(FLD)和ICA的人脸识别为例,计算得到生物特征信息分别为45.0比特(PCA)、37.0比特(FLD)、39.0比特(ICA)和55.6比特(PCA和FLD融合特征)。基于这种生物特征信息的定义,我们模拟了生物特征图像的退化,并计算了生物特征信息的减少。结果表明,一个准线性减少小水平的模糊与一个渐进的行为,在较大的模糊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Low Can You Go? Low Resolution Face Recognition Study Using Kernel Correlation Feature Analysis on the FRGCv2 dataset Using Biometric Verification to Estimate Identification Performance Segmenting Non-Ideal Irises Using Geodesic Active Contours Gait Recognition Through MPCA Plus LDA 3D Touchless Fingerprints: Compatibility with Legacy Rolled Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1