BFO-ICA based multi focus image fusion

S. Agrawal, S. Swain, Lingraj Dora
{"title":"BFO-ICA based multi focus image fusion","authors":"S. Agrawal, S. Swain, Lingraj Dora","doi":"10.1109/SIS.2013.6615178","DOIUrl":null,"url":null,"abstract":"This paper presents a pixel based multi focus image fusion technique using independent component analysis (ICA) and bacteria foraging optimization (BFO) algorithm. The basic idea here is to obtain the ICA bases from a set of registered images and optimize them using BFO. The novelty in this paper is that BFO-ICA has not been applied to multi-focus image fusion. The images in the ICA domain are fused and the fused image is then reconstructed using inverse transform. The results are compared with FastICA and PSO-ICA. It is observed that optimizing with BFO yield better result.","PeriodicalId":444765,"journal":{"name":"2013 IEEE Symposium on Swarm Intelligence (SIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Swarm Intelligence (SIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2013.6615178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a pixel based multi focus image fusion technique using independent component analysis (ICA) and bacteria foraging optimization (BFO) algorithm. The basic idea here is to obtain the ICA bases from a set of registered images and optimize them using BFO. The novelty in this paper is that BFO-ICA has not been applied to multi-focus image fusion. The images in the ICA domain are fused and the fused image is then reconstructed using inverse transform. The results are compared with FastICA and PSO-ICA. It is observed that optimizing with BFO yield better result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BFO-ICA的多焦点图像融合
提出了一种基于独立分量分析(ICA)和细菌觅食优化(BFO)算法的像素多焦点图像融合技术。这里的基本思想是从一组配准图像中获得ICA基,并使用BFO对其进行优化。本文的新颖之处在于BFO-ICA尚未应用于多焦点图像融合。将ICA域中的图像进行融合,然后对融合后的图像进行逆变换重建。结果与FastICA和PSO-ICA进行了比较。结果表明,用BFO优化效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of stagnation behavior of vector evaluated particle swarm optimization Reinforcement learning in swarm-robotics for multi-agent foraging-task domain A novel ACO algorithm for dynamic binary chains based on changes in the system's stability Cooperative particle swarm optimization in dynamic environments Joint energy and spinning reserve dispatch in wind-thermal power system using IDE-SAR technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1