Maximum entropy and related methods

I. Csiszár
{"title":"Maximum entropy and related methods","authors":"I. Csiszár","doi":"10.1109/WITS.1994.513853","DOIUrl":null,"url":null,"abstract":"Originally coming from physics, maximum entropy (ME) has been promoted to a general principle of inference primarily by the works of Jaynes. ME applies to the problem of inferring a probability mass (or density) function, or any non-negative function p(x), when the available information specifies a set E of feasible functions, and there is a prior guess q /spl notin/ E. The author will review the arguments that have been put forward for justifying ME. In this author's opinion, the strongest theoretical support to ME is provided by the axiomatic approach. This shows that, in some sense, ME is the only logically consistent method of inferring a function subject to linear constraints.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Originally coming from physics, maximum entropy (ME) has been promoted to a general principle of inference primarily by the works of Jaynes. ME applies to the problem of inferring a probability mass (or density) function, or any non-negative function p(x), when the available information specifies a set E of feasible functions, and there is a prior guess q /spl notin/ E. The author will review the arguments that have been put forward for justifying ME. In this author's opinion, the strongest theoretical support to ME is provided by the axiomatic approach. This shows that, in some sense, ME is the only logically consistent method of inferring a function subject to linear constraints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最大熵及其相关方法
最大熵(maximum entropy, ME)最初来源于物理学,主要是由Jaynes的著作将其提升为一般的推理原理。当可用信息指定可行函数的集合E,并且存在预先猜测q /spl notin/ E时,ME适用于推断概率质量(或密度)函数或任何非负函数p(x)的问题。作者将回顾为证明ME而提出的论点。在笔者看来,公理化方法为ME提供了最有力的理论支持。这表明,在某种意义上,ME是推断受线性约束的函数的唯一逻辑一致的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1