Effective Computational Techniques for Generating Electroencephalogram Data

Mahmoud Elsayed, K. Sim, Shing Chiang Tan
{"title":"Effective Computational Techniques for Generating Electroencephalogram Data","authors":"Mahmoud Elsayed, K. Sim, Shing Chiang Tan","doi":"10.1109/ICOASE51841.2020.9436591","DOIUrl":null,"url":null,"abstract":"The complexity of the electroencephalogram makes it a significant challenge for physicians and engineers to extract useful information from, process, and classify the electroencephalogram signals. Moreover, the difficulty in conducting clinical experimentation limits the collection of a sufficient number of electroencephalogram data samples for further processing using advanced computational techniques such as deep learning. This complexity and difficulty together with the inflexibility and the subtle linearity of the traditional signal processing techniques motivate us to find innovative techniques to address the problem of insufficient electroencephalogram data. In this paper, a number of computational and statistical techniques to generate electroencephalogram data from a previously done experiment on 30 healthy participants experiencing painful stimuli are applied. We believe this application will benefit the research in the field of biomedical signal processing.","PeriodicalId":126112,"journal":{"name":"2020 International Conference on Advanced Science and Engineering (ICOASE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE51841.2020.9436591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The complexity of the electroencephalogram makes it a significant challenge for physicians and engineers to extract useful information from, process, and classify the electroencephalogram signals. Moreover, the difficulty in conducting clinical experimentation limits the collection of a sufficient number of electroencephalogram data samples for further processing using advanced computational techniques such as deep learning. This complexity and difficulty together with the inflexibility and the subtle linearity of the traditional signal processing techniques motivate us to find innovative techniques to address the problem of insufficient electroencephalogram data. In this paper, a number of computational and statistical techniques to generate electroencephalogram data from a previously done experiment on 30 healthy participants experiencing painful stimuli are applied. We believe this application will benefit the research in the field of biomedical signal processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成脑电图数据的有效计算技术
脑电图的复杂性使得从脑电图信号中提取有用信息、处理和分类成为医生和工程师面临的一个重大挑战。此外,进行临床实验的困难限制了收集足够数量的脑电图数据样本,以便使用先进的计算技术(如深度学习)进行进一步处理。这种复杂性和困难,加上传统信号处理技术的不灵活性和微妙的线性,促使我们寻找创新的技术来解决脑电图数据不足的问题。在本文中,一些计算和统计技术,以产生脑电图数据,从30健康参与者经历痛苦刺激的先前完成的实验。我们相信这一应用将有利于生物医学信号处理领域的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
COVID-19 Diagnosis Systems Based on Deep Convolutional Neural Networks Techniques: A Review Fake News Detection Using Machine Learning and Deep Learning Algorithms Transcript Validation System using biometric characteristics COVID-19 Diagnosis from Chest X-ray Images Using Deep Learning Approach Hate Speech Detection Using Genetic Programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1