A Parallel and Scalable Framework for Insider Threat Detection

Abdoulaye Diop, N. Emad, Thierry Winter
{"title":"A Parallel and Scalable Framework for Insider Threat Detection","authors":"Abdoulaye Diop, N. Emad, Thierry Winter","doi":"10.1109/HiPC50609.2020.00024","DOIUrl":null,"url":null,"abstract":"In this article, we propose an innovative method for the detection of insider threats. This method is based on a unite and conquer approach used to combine ensemble learning techniques, which have the particularity of being intrinsically parallel. Furthermore, it showcases multi-level parallelism properties, offers fault tolerance, and is suitable for heterogeneous architectures. To highlight our approach's efficacy, we present a use case of insider threat detection on a parallel platform. This experiment's results showed the benefits of this method relative to its improvement of classification AUC-score and its scalability.","PeriodicalId":375004,"journal":{"name":"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC50609.2020.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, we propose an innovative method for the detection of insider threats. This method is based on a unite and conquer approach used to combine ensemble learning techniques, which have the particularity of being intrinsically parallel. Furthermore, it showcases multi-level parallelism properties, offers fault tolerance, and is suitable for heterogeneous architectures. To highlight our approach's efficacy, we present a use case of insider threat detection on a parallel platform. This experiment's results showed the benefits of this method relative to its improvement of classification AUC-score and its scalability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个并行和可扩展的内部威胁检测框架
在本文中,我们提出了一种检测内部威胁的创新方法。该方法基于统一和征服的方法,将集成学习技术结合起来,具有内在并行的特点。此外,它还展示了多级并行特性,提供了容错性,并且适合于异构体系结构。为了突出我们方法的有效性,我们给出了一个在并行平台上进行内部威胁检测的用例。实验结果表明了该方法在提高分类AUC-score和可扩展性方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HiPC 2020 ORGANIZATION HiPC 2020 Industry Sponsors PufferFish: NUMA-Aware Work-stealing Library using Elastic Tasks Algorithms for Preemptive Co-scheduling of Kernels on GPUs 27th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC 2020) Technical program
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1