Gradient Boosted Trees Based Mode Selection Decision for Moving D2D-Enabled Heterogeneous Ultra-Dense Networks

Bingying Xu, Xiaodong Xu, Ruolan Zhu
{"title":"Gradient Boosted Trees Based Mode Selection Decision for Moving D2D-Enabled Heterogeneous Ultra-Dense Networks","authors":"Bingying Xu, Xiaodong Xu, Ruolan Zhu","doi":"10.1109/GCWkshps45667.2019.9024605","DOIUrl":null,"url":null,"abstract":"With the evolution of fifth-generation (5G) communication systems toward to heterogeneous ultra-dense networks (H-UDNs). Device-to-device (D2D) communications have been proposed as a promising technology to improve system capacity and user experiences. However, in moving D2D-enabled H- UDNs, it will cause heavy system overhead from the frequent mode selection between D2D mode and cellular mode. In this paper, in order to achieve a trade off between the advantages of D2D communications and system overhead, we propose a Gradient Boosted Trees (GBT) based multi-attribute D2D mode selection decision strategy. The proposed strategy combines Received Signal Strength (RSS), the Signal to Interference plus Noise Ratio (SINR) and moving angle of users to assist base stations (BSs) in selecting the optimal communication mode for user equipments (UEs) in mode selection decision process. Simulation results show that our proposed strategy brings improvements to the mode selection performance, which can be reflected in reducing the mode selection probability and increasing the D2D mode dwell time. Moreover, the system overhead is further reduced and system throughput increases significantly.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the evolution of fifth-generation (5G) communication systems toward to heterogeneous ultra-dense networks (H-UDNs). Device-to-device (D2D) communications have been proposed as a promising technology to improve system capacity and user experiences. However, in moving D2D-enabled H- UDNs, it will cause heavy system overhead from the frequent mode selection between D2D mode and cellular mode. In this paper, in order to achieve a trade off between the advantages of D2D communications and system overhead, we propose a Gradient Boosted Trees (GBT) based multi-attribute D2D mode selection decision strategy. The proposed strategy combines Received Signal Strength (RSS), the Signal to Interference plus Noise Ratio (SINR) and moving angle of users to assist base stations (BSs) in selecting the optimal communication mode for user equipments (UEs) in mode selection decision process. Simulation results show that our proposed strategy brings improvements to the mode selection performance, which can be reflected in reducing the mode selection probability and increasing the D2D mode dwell time. Moreover, the system overhead is further reduced and system throughput increases significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于梯度增强树的移动d2d异构超密集网络模式选择决策
随着第五代(5G)通信系统向异构超密集网络(h- udn)演进。设备到设备(D2D)通信被认为是一种很有前途的技术,可以提高系统容量和用户体验。然而,在移动支持D2D的H- udn时,由于D2D模式和蜂窝模式之间的频繁模式选择,将导致沉重的系统开销。为了在D2D通信优势和系统开销之间取得平衡,本文提出了一种基于梯度提升树(Gradient boosting Trees, GBT)的多属性D2D模式选择决策策略。该策略结合接收信号强度(RSS)、信噪比(SINR)和用户移动角度,帮助基站在模式选择决策过程中为用户设备选择最优通信模式。仿真结果表明,该策略提高了模态选择性能,降低了模态选择概率,增加了D2D模态停留时间。此外,系统开销进一步降低,系统吞吐量显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Timeliness Analysis of Service-Driven Collaborative Mobile Edge Computing in UAV Swarm 5G Enabled Mobile Healthcare for Ambulances Secure Quantized Sequential Detection in the Internet of Things with Eavesdroppers A Novel Indoor Coverage Measurement Scheme Based on FRFT and Gaussian Process Regression A Data-Driven Deep Neural Network Pruning Approach Towards Efficient Digital Signal Modulation Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1