S M Krassner, B Granger, P Lee, C Guerra, T Le, K O Luc
{"title":"Action of exogenous potassium and calcium ions on in vitro metacyclogenesis in Trypanosoma cruzi.","authors":"S M Krassner, B Granger, P Lee, C Guerra, T Le, K O Luc","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The cations Ca2+ and K+ and the anions Cl-, HCO3-, and PO4- were studied for their contribution to metacyclic trypomastigote formation of Trypanosoma cruzi in starvation media consisting of phosphate-buffered saline (PBS) + 10 mM proline + 10 mM sodium acetate as well as one of the following salts: 0.035% NaHCO3 (PBSNPA), 0.035% K2CO3 (PBSKPA) or 0.035% K2HPO4 (PBSPPA). Isolates CL and DM28c were activated to transform with 5% CO2 and the percent metacyclogenesis determined after incubation for 96 h in PBS starvation media. Maximal metacyclogenesis was found with CaCl2 and KCl. In the presence of K+, the percent transformation was highest with the phosphate salt, followed by the carbonate and the chloride salts. Cells incubated in PBSNPA and the cationic ionophores A23187 (5 x 10(-6) M), lasalocid (5 x 10(-6) M), and valinomycin (10(-8) M) do not survive; addition of 2 mM CaCl2 or 17 mM KCl to DM28c cells, reversed the lethal action of the ionophores permitting differentiation into metacyclic forms. The addition of CaCl2 to CL cells incubated in ionophores abrogated the lethal effect of the ionophores but transformation was significantly different than in control preparations. Adding KCl to ionophore incubated cells resulted in normal levels of transformation except in the case of valinomycin. DM28c and CL cells incubated in PBSKPA show significantly greater metacyclogenesis in the presence of 5 mM EGTA. These results indicate that exogenous concentrations of several cations and anions significantly influence T. cruzi metacyclogenesis and that the degree of response by the parasite to free ion levels may be strain dependent.</p>","PeriodicalId":22758,"journal":{"name":"The Journal of protozoology","volume":"38 6","pages":"602-8"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of protozoology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The cations Ca2+ and K+ and the anions Cl-, HCO3-, and PO4- were studied for their contribution to metacyclic trypomastigote formation of Trypanosoma cruzi in starvation media consisting of phosphate-buffered saline (PBS) + 10 mM proline + 10 mM sodium acetate as well as one of the following salts: 0.035% NaHCO3 (PBSNPA), 0.035% K2CO3 (PBSKPA) or 0.035% K2HPO4 (PBSPPA). Isolates CL and DM28c were activated to transform with 5% CO2 and the percent metacyclogenesis determined after incubation for 96 h in PBS starvation media. Maximal metacyclogenesis was found with CaCl2 and KCl. In the presence of K+, the percent transformation was highest with the phosphate salt, followed by the carbonate and the chloride salts. Cells incubated in PBSNPA and the cationic ionophores A23187 (5 x 10(-6) M), lasalocid (5 x 10(-6) M), and valinomycin (10(-8) M) do not survive; addition of 2 mM CaCl2 or 17 mM KCl to DM28c cells, reversed the lethal action of the ionophores permitting differentiation into metacyclic forms. The addition of CaCl2 to CL cells incubated in ionophores abrogated the lethal effect of the ionophores but transformation was significantly different than in control preparations. Adding KCl to ionophore incubated cells resulted in normal levels of transformation except in the case of valinomycin. DM28c and CL cells incubated in PBSKPA show significantly greater metacyclogenesis in the presence of 5 mM EGTA. These results indicate that exogenous concentrations of several cations and anions significantly influence T. cruzi metacyclogenesis and that the degree of response by the parasite to free ion levels may be strain dependent.