Estimation of relative sensor characteristics for hyperspectral super-resolution

Charis Lanaras, E. Baltsavias, K. Schindler
{"title":"Estimation of relative sensor characteristics for hyperspectral super-resolution","authors":"Charis Lanaras, E. Baltsavias, K. Schindler","doi":"10.1109/WHISPERS.2016.8071757","DOIUrl":null,"url":null,"abstract":"To enhance the spatial resolution of hyperspectral data, additional multispectral images of higher resolution can be used. However, to combine the two data sources information about the sensors is needed. In this paper we derive a model to estimate the relative spatial and spectral response of the two sensors. The proposed formulation includes non-negativity, recovers remaining registration (shift) errors, and uses prior information to adjust to the shape of the spectral response with either l1 or l2 norm regularization. The framework is tested both with real data and with simulated data where the ground truth is known.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To enhance the spatial resolution of hyperspectral data, additional multispectral images of higher resolution can be used. However, to combine the two data sources information about the sensors is needed. In this paper we derive a model to estimate the relative spatial and spectral response of the two sensors. The proposed formulation includes non-negativity, recovers remaining registration (shift) errors, and uses prior information to adjust to the shape of the spectral response with either l1 or l2 norm regularization. The framework is tested both with real data and with simulated data where the ground truth is known.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光谱超分辨率相对传感器特性估计
为了提高高光谱数据的空间分辨率,可以使用更高分辨率的附加多光谱图像。然而,要将这两个数据源结合起来,就需要有关传感器的信息。在本文中,我们推导了一个模型来估计两个传感器的相对空间和光谱响应。所提出的公式包括非负性,恢复剩余的配准(移位)误差,并使用l1或l2范数正则化使用先验信息来调整光谱响应的形状。该框架用真实数据和已知地面真实情况的模拟数据进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1