Strengthening Mechanisms in γ′ Precipitating Alloys

D. Raynor, J. Silcock
{"title":"Strengthening Mechanisms in γ′ Precipitating Alloys","authors":"D. Raynor, J. Silcock","doi":"10.1179/MSC.1970.4.1.121","DOIUrl":null,"url":null,"abstract":"AbstractThe mechanical properties of several austenitic steels containing γ′ precipitate have been studied. A large increase in proof stress occurs during ageing as a result of particle growth at almost constant volume fraction of precipitate. Up to the peak proof stress, dislocations are paired owing to the high antiphase-domain boundary energy and this, in conjunction with Friedel's theory relating effective particle spacing to particle strength, satisfactorily accounts for the increasing proof stress. The value of the antiphase-domain boundary energy is higher at higher Ti/Al ratios. Misfits between 0 and 0·4% have no influence on yield strength. Large particles are by-passed by Orowan looping irrespective of misfit. During the looping process a transition from paired to single dislocations occurs that reduces the fall in stress with increasing particle size. Stable Orowan loops give rise to a back-stress that is detectable at low strains. This causes work-hardening by the Fisher, Hart, and Pry mechani...","PeriodicalId":103313,"journal":{"name":"Metal Science Journal","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"217","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/MSC.1970.4.1.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 217

Abstract

AbstractThe mechanical properties of several austenitic steels containing γ′ precipitate have been studied. A large increase in proof stress occurs during ageing as a result of particle growth at almost constant volume fraction of precipitate. Up to the peak proof stress, dislocations are paired owing to the high antiphase-domain boundary energy and this, in conjunction with Friedel's theory relating effective particle spacing to particle strength, satisfactorily accounts for the increasing proof stress. The value of the antiphase-domain boundary energy is higher at higher Ti/Al ratios. Misfits between 0 and 0·4% have no influence on yield strength. Large particles are by-passed by Orowan looping irrespective of misfit. During the looping process a transition from paired to single dislocations occurs that reduces the fall in stress with increasing particle size. Stable Orowan loops give rise to a back-stress that is detectable at low strains. This causes work-hardening by the Fisher, Hart, and Pry mechani...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
γ′析出合金的强化机制
摘要研究了几种含γ′沉淀的奥氏体钢的力学性能。在时效过程中,由于颗粒在析出相的体积分数几乎恒定的情况下生长,证明应力会大幅增加。在峰值证明应力之前,由于高反相域边界能量,位错是成对的,这与弗里德尔关于有效粒子间距与粒子强度的理论相结合,令人满意地解释了证明应力的增加。钛铝比越高,反相畴边界能越高。0 ~ 0.4%的偏差对屈服强度没有影响。无论错配与否,大颗粒都被欧罗文环绕过。在环化过程中,从成对位错到单位错的转变发生,减小了随粒径增加而产生的应力下降。稳定的奥罗文环产生的背应力在低应变下可检测到。这导致了Fisher、Hart和Pry机制的加工硬化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Superconducting Materials Research Influence of Anodic Layers on Fatigue-Crack Initiation in Aluminium Precipitation Processes in Mg–Th, Mg–Th–Mn, Mg–Mn, and Mg–Zr Alloys Precipitation in Aluminium-Copper Alloys Containing Additions of Indium and Tin A Kinetic Approach to Hydrogen Diffusion through Steel at 100–350°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1