{"title":"Strengthening Mechanisms in γ′ Precipitating Alloys","authors":"D. Raynor, J. Silcock","doi":"10.1179/MSC.1970.4.1.121","DOIUrl":null,"url":null,"abstract":"AbstractThe mechanical properties of several austenitic steels containing γ′ precipitate have been studied. A large increase in proof stress occurs during ageing as a result of particle growth at almost constant volume fraction of precipitate. Up to the peak proof stress, dislocations are paired owing to the high antiphase-domain boundary energy and this, in conjunction with Friedel's theory relating effective particle spacing to particle strength, satisfactorily accounts for the increasing proof stress. The value of the antiphase-domain boundary energy is higher at higher Ti/Al ratios. Misfits between 0 and 0·4% have no influence on yield strength. Large particles are by-passed by Orowan looping irrespective of misfit. During the looping process a transition from paired to single dislocations occurs that reduces the fall in stress with increasing particle size. Stable Orowan loops give rise to a back-stress that is detectable at low strains. This causes work-hardening by the Fisher, Hart, and Pry mechani...","PeriodicalId":103313,"journal":{"name":"Metal Science Journal","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"217","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/MSC.1970.4.1.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 217
Abstract
AbstractThe mechanical properties of several austenitic steels containing γ′ precipitate have been studied. A large increase in proof stress occurs during ageing as a result of particle growth at almost constant volume fraction of precipitate. Up to the peak proof stress, dislocations are paired owing to the high antiphase-domain boundary energy and this, in conjunction with Friedel's theory relating effective particle spacing to particle strength, satisfactorily accounts for the increasing proof stress. The value of the antiphase-domain boundary energy is higher at higher Ti/Al ratios. Misfits between 0 and 0·4% have no influence on yield strength. Large particles are by-passed by Orowan looping irrespective of misfit. During the looping process a transition from paired to single dislocations occurs that reduces the fall in stress with increasing particle size. Stable Orowan loops give rise to a back-stress that is detectable at low strains. This causes work-hardening by the Fisher, Hart, and Pry mechani...