Particle Swarm Optimization with Polymorphic Update Rules

Christian Veenhuis
{"title":"Particle Swarm Optimization with Polymorphic Update Rules","authors":"Christian Veenhuis","doi":"10.1109/ICAIS.2009.30","DOIUrl":null,"url":null,"abstract":"In recent years a swarm-based optimization methodology called Particle Swarm Optimization (PSO) has developed. If one wants to apply PSO one has to specify several parameters as well as to select a neighborhood topology. Several topologies being widely used can be found in literature. This raises the question, which one fits best to your application at hand. To get rid of this topology selection problem, a new concept called Polymorphic Particle Swarm Optimization (PolyPSO) is proposed. PolyPSO generalizes the standard update rule by a polymorphic update rule. The mathematical expression of this polymorphic update rule can be changed on symbolic level. This polymorphic update rule is an adaptive update rule changing symbols based on accumulative histograms and roulette-wheel sampling. PolyPSO is applied to four typical benchmark functions known from literature. In most cases it outperforms the other PSO variants under consideration. Since PolyPSO performs not worse it can be used as alternative to solve this way the topology selection problem.","PeriodicalId":161840,"journal":{"name":"2009 International Conference on Adaptive and Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Adaptive and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIS.2009.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years a swarm-based optimization methodology called Particle Swarm Optimization (PSO) has developed. If one wants to apply PSO one has to specify several parameters as well as to select a neighborhood topology. Several topologies being widely used can be found in literature. This raises the question, which one fits best to your application at hand. To get rid of this topology selection problem, a new concept called Polymorphic Particle Swarm Optimization (PolyPSO) is proposed. PolyPSO generalizes the standard update rule by a polymorphic update rule. The mathematical expression of this polymorphic update rule can be changed on symbolic level. This polymorphic update rule is an adaptive update rule changing symbols based on accumulative histograms and roulette-wheel sampling. PolyPSO is applied to four typical benchmark functions known from literature. In most cases it outperforms the other PSO variants under consideration. Since PolyPSO performs not worse it can be used as alternative to solve this way the topology selection problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多态更新规则的粒子群优化
近年来,一种基于群体的优化方法被称为粒子群优化(PSO)。如果想要应用粒子群算法,就必须指定几个参数以及选择一个邻域拓扑。在文献中可以找到一些广泛使用的拓扑结构。这就提出了一个问题,哪一个最适合您手头的应用程序。为了解决这一拓扑选择问题,提出了多态粒子群优化(polyypso)的概念。PolyPSO通过多态更新规则泛化标准更新规则。该多态更新规则的数学表达式可以在符号级别上改变。该多态更新规则是一种基于累积直方图和轮盘采样的自适应更新规则。PolyPSO应用于文献中已知的四个典型基准函数。在大多数情况下,它优于正在考虑的其他PSO变体。由于PolyPSO的性能并不差,它可以作为解决这种拓扑选择问题的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perspectives on Robotic Embodiment from a Developmental Cognitive Architecture A Learning Algorithm for Self-Organizing Maps Based on a Low-Pass Filter Scheme Particle Swarm Optimization with Velocity Adaptation Creating Complex, Adaptable Management Strategies via the Opportunistic Integration of Decentralised Management Resources A Multi-class Incremental and Decremental SVM Approach Using Adaptive Directed Acyclic Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1