Learning 3D Faces from Photo-Realistic Facial Synthesis

Ruizhe Wang, Chih-Fan Chen, Hao Peng, Xudong Liu, Xin Li
{"title":"Learning 3D Faces from Photo-Realistic Facial Synthesis","authors":"Ruizhe Wang, Chih-Fan Chen, Hao Peng, Xudong Liu, Xin Li","doi":"10.1109/3DV50981.2020.00096","DOIUrl":null,"url":null,"abstract":"We present an approach to efficiently learn an accurate and complete 3D face model from a single image. Previous methods heavily rely on 3D Morphable Models to populate the facial shape space as well as an over-simplified shading model for image formulation. By contrast, our method directly augments a large set of 3D faces from a compact collection of facial scans and employs a high-quality rendering engine to synthesize the corresponding photo-realistic facial images. We first use a deep neural network to regress vertex coordinates from the given image and then refine them by a non-rigid deformation process to more accurately capture local shape similarity. We have conducted extensive experiments to demonstrate the superiority of the proposed approach on 2D-to-3D facial shape inference, especially its excellent generalization property on real-world selfie images.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an approach to efficiently learn an accurate and complete 3D face model from a single image. Previous methods heavily rely on 3D Morphable Models to populate the facial shape space as well as an over-simplified shading model for image formulation. By contrast, our method directly augments a large set of 3D faces from a compact collection of facial scans and employs a high-quality rendering engine to synthesize the corresponding photo-realistic facial images. We first use a deep neural network to regress vertex coordinates from the given image and then refine them by a non-rigid deformation process to more accurately capture local shape similarity. We have conducted extensive experiments to demonstrate the superiority of the proposed approach on 2D-to-3D facial shape inference, especially its excellent generalization property on real-world selfie images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从逼真的面部合成学习3D面孔
我们提出了一种从单幅图像中高效地学习准确完整的三维人脸模型的方法。以前的方法严重依赖于3D变形模型来填充面部形状空间,以及过度简化的阴影模型用于图像制定。相比之下,我们的方法直接从紧凑的面部扫描集合中增强大量3D面部,并使用高质量的渲染引擎合成相应的逼真的面部图像。我们首先使用深度神经网络从给定图像中回归顶点坐标,然后通过非刚性变形过程对其进行细化,以更准确地捕获局部形状相似性。我们已经进行了大量的实验来证明所提出的方法在2d到3d面部形状推断方面的优越性,特别是其对现实世界自拍图像的出色泛化特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen-space Regularization on Differentiable Rasterization Motion Annotation Programs: A Scalable Approach to Annotating Kinematic Articulations in Large 3D Shape Collections Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization KeystoneDepth: History in 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1