V. Radisic, K. Leong, X. Mei, S. Sarkozy, W. Yoshida, Po-Hsin Liu, J. Uyeda, R. Lai, W. Deal
{"title":"A 50 mW 220 GHz power amplifier module","authors":"V. Radisic, K. Leong, X. Mei, S. Sarkozy, W. Yoshida, Po-Hsin Liu, J. Uyeda, R. Lai, W. Deal","doi":"10.1109/MWSYM.2010.5515248","DOIUrl":null,"url":null,"abstract":"In this paper, a 220 GHz solid-state power amplifier (SSPA) module is presented. Eight-way on-chip power combining is used to achieve a saturated output power ≥ 50 mW over a 217.5 to 220 GHz bandwidth, representing a significant increase in SSPA output power at this frequency compared to prior state of the art. The amplifier MMIC is implemented in coplanar waveguide (CPW) technology and uses sub 50 nm InP HEMT transistors. Two levels of power combining, a 2∶1 tandem coupler and a 4∶1 Dolph-Chebychev transformer, are realized in CPW. The module demonstrates ≥ 11.5 dB small signal gain from 207 to 230 GHz. Saturated output power ≥ 40 mW was measured from 216 to 222.5 GHz.","PeriodicalId":341557,"journal":{"name":"2010 IEEE MTT-S International Microwave Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2010.5515248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
In this paper, a 220 GHz solid-state power amplifier (SSPA) module is presented. Eight-way on-chip power combining is used to achieve a saturated output power ≥ 50 mW over a 217.5 to 220 GHz bandwidth, representing a significant increase in SSPA output power at this frequency compared to prior state of the art. The amplifier MMIC is implemented in coplanar waveguide (CPW) technology and uses sub 50 nm InP HEMT transistors. Two levels of power combining, a 2∶1 tandem coupler and a 4∶1 Dolph-Chebychev transformer, are realized in CPW. The module demonstrates ≥ 11.5 dB small signal gain from 207 to 230 GHz. Saturated output power ≥ 40 mW was measured from 216 to 222.5 GHz.