Analysis of Methodologies to Model the Content for Conveying the Correct Information

Milind Gayakwad, S. Patil
{"title":"Analysis of Methodologies to Model the Content for Conveying the Correct Information","authors":"Milind Gayakwad, S. Patil","doi":"10.1109/CCGE50943.2021.9776466","DOIUrl":null,"url":null,"abstract":"Information is found in various forms like Misinformation, Dis-information, Impartial Information, legit and complete information. Content is a derived form of the information created by the content writer for conveying the information. Considering the growing volume of content, it is a tough task to decide on useful and irrelevant content. To deal with such a large volume of data processing, storage is necessary. The irrelevant content causes a waste of time and money for the content creator, consumer, and platform provider as well. Search engine Marketing and spammy techniques rank the content and thereby a website. This type of practice is encouraging inorganic methodologies to boost the rank of content. The use of organic methodologies can provide the solution up to a considerable extent. To design the organic models the research carried out earlier in this field is discussed in this paper. Methodologies like Foraging, Collaborative Filtering, Social Commerce, Micro-Video Prediction, Social Commerce.","PeriodicalId":130452,"journal":{"name":"2021 International Conference on Computing, Communication and Green Engineering (CCGE)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computing, Communication and Green Engineering (CCGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGE50943.2021.9776466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Information is found in various forms like Misinformation, Dis-information, Impartial Information, legit and complete information. Content is a derived form of the information created by the content writer for conveying the information. Considering the growing volume of content, it is a tough task to decide on useful and irrelevant content. To deal with such a large volume of data processing, storage is necessary. The irrelevant content causes a waste of time and money for the content creator, consumer, and platform provider as well. Search engine Marketing and spammy techniques rank the content and thereby a website. This type of practice is encouraging inorganic methodologies to boost the rank of content. The use of organic methodologies can provide the solution up to a considerable extent. To design the organic models the research carried out earlier in this field is discussed in this paper. Methodologies like Foraging, Collaborative Filtering, Social Commerce, Micro-Video Prediction, Social Commerce.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为传达正确信息而对内容进行建模的方法分析
信息有各种各样的形式,如错误信息、虚假信息、公正信息、合法信息和完整信息。内容是内容作者为传递信息而创建的信息的派生形式。考虑到不断增长的内容量,决定有用和无关的内容是一项艰巨的任务。为了处理如此大量的数据,存储是必要的。不相关的内容也会浪费内容创建者、消费者和平台提供商的时间和金钱。搜索引擎营销和垃圾邮件技术排名的内容,从而一个网站。这种类型的实践鼓励无机方法来提高内容的等级。有机方法的使用可以在相当大的程度上提供解决方案。为了设计有机模型,本文讨论了该领域早期开展的研究。比如搜索,协同过滤,社交商务,微视频预测,社交商务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Market Analysis using Time Series Data Analytics Techniques [Agendas] Irrigation to Smart Irrigation and Tube Well Users A Feature Cum Intensity Based SSIM Optimised Hybrid Image Registration Technique Flood Level Control and Management Using Instrumentation and Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1