Receiver development for BICEP Array, a next-generation CMB polarimeter at the South Pole

L. Moncelsi, P. Ade, Z. Ahmed, M. Amiri, D. Barkats, R. Thakur, C. Bischoff, J. Bock, J. Bock, V. Buza, V. Buza, J. Cheshire, J. Connors, J. Connors, J. Cornelison, M. Crumrine, A. Cukierman, E. Denison, M. Dierickx, L. Duband, M. Eiben, S. Fatigoni, J. Filippini, N. Goeckner-wald, D. Goldfinger, J. Grayson, P. Grimes, G. Hall, G. Hall, M. Halpern, S. Harrison, S. Henderson, S. Hildebrandt, S. Hildebrandt, G. Hilton, J. Hubmayr, H. Hui, K. Irwin, J. Kang, J. Kang, K. Karkare, K. Karkare, S. Kefeli, J. Kovac, C. Kuo, K. Lau, E. Leitch, K. Megerian, L. Minutolo, Y. Nakato, Y. Nakato, T. Namikawa, T. Namikawa, H. Nguyen, R. O’Brient, R. O’Brient, S. Palladino, N. Precup, T. Prouvé, C. Pryke, B. Racine, C. Reintsema, A. Schillaci, B. Schmitt, A. Soliman, T. S. Germaine, T. S. Germaine, B. Steinbach, R. Sudiwala, K. Thompson, C. Tucker, A. Turner, C. Umilta, C. Umilta, A. Vieregg, A. Wandui, A. Weber, D. Wiebe, J. Willmert, W. L. K. Wu, E. Yang, K. Yoon, E. Young, C. Yu, L. Zeng, C. Zhang, S. Zhang
{"title":"Receiver development for BICEP Array, a next-generation CMB polarimeter at the South Pole","authors":"L. Moncelsi, P. Ade, Z. Ahmed, M. Amiri, D. Barkats, R. Thakur, C. Bischoff, J. Bock, J. Bock, V. Buza, V. Buza, J. Cheshire, J. Connors, J. Connors, J. Cornelison, M. Crumrine, A. Cukierman, E. Denison, M. Dierickx, L. Duband, M. Eiben, S. Fatigoni, J. Filippini, N. Goeckner-wald, D. Goldfinger, J. Grayson, P. Grimes, G. Hall, G. Hall, M. Halpern, S. Harrison, S. Henderson, S. Hildebrandt, S. Hildebrandt, G. Hilton, J. Hubmayr, H. Hui, K. Irwin, J. Kang, J. Kang, K. Karkare, K. Karkare, S. Kefeli, J. Kovac, C. Kuo, K. Lau, E. Leitch, K. Megerian, L. Minutolo, Y. Nakato, Y. Nakato, T. Namikawa, T. Namikawa, H. Nguyen, R. O’Brient, R. O’Brient, S. Palladino, N. Precup, T. Prouvé, C. Pryke, B. Racine, C. Reintsema, A. Schillaci, B. Schmitt, A. Soliman, T. S. Germaine, T. S. Germaine, B. Steinbach, R. Sudiwala, K. Thompson, C. Tucker, A. Turner, C. Umilta, C. Umilta, A. Vieregg, A. Wandui, A. Weber, D. Wiebe, J. Willmert, W. L. K. Wu, E. Yang, K. Yoon, E. Young, C. Yu, L. Zeng, C. Zhang, S. Zhang","doi":"10.1117/12.2561995","DOIUrl":null,"url":null,"abstract":"A detection of curl-type ($B$-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primordial $B$-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. BICEP Array (BA) is the Stage-3 instrument of the BK program and will comprise four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale $B$-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full BICEP Array instrument is projected to reach $\\sigma_r$ between 0.002 and 0.004, depending on foreground complexity and degree of removal of $B$-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2561995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

A detection of curl-type ($B$-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primordial $B$-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. BICEP Array (BA) is the Stage-3 instrument of the BK program and will comprise four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale $B$-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full BICEP Array instrument is projected to reach $\sigma_r$ between 0.002 and 0.004, depending on foreground complexity and degree of removal of $B$-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于BICEP阵列的接收机开发,该阵列是位于南极的下一代微波背景偏振计
探测到主宇宙微波背景的旋型($B$模式)极化将是宇宙起源暴胀范式的直接证据。BICEP/Keck阵列(BK)计划的目标是角度尺度,在那里原始B模式极化的功率预计将达到峰值,灵敏度不断提高,并发布了迄今为止最严格的暴胀约束。BICEP阵列(BA)是BK计划的第三阶段仪器,将包括四个bicep3级接收器,在30/ 40,95,150和220/270 GHz观测,总共有32,000多个探测器;如此宽的频率覆盖范围对于控制银河系前景是必要的,这也会产生度尺度的B模式信号。30/40 GHz接收机旨在限制同步加速器的前景,并于2020年初开始在南极观测。在为期3年的观测活动结束时,完整的BICEP阵列仪器预计将达到$\sigma_r$ 0.002到0.004之间,这取决于前景的复杂性和由于引力透镜(去透镜)导致的$B$模式的去除程度。本文介绍了首台BA接收机的设计、实测性能和校准情况。我们还预览了7776检测器150 GHz接收机的时域多路读出所增加的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical design study for the 860 GHz first-light camera module of CCAT-p (Erratum) Front Matter: Volume 11453 Demonstration of five-layer phase-flat achromatic half-wave plate with anti-reflective structures and superconducting magnetic bearing for CMB polarization experiments Design and demonstration of the frequency independent fast axis of the Pancharatnam base multi-layer half-wave plate for CMB polarization experiment Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1