C. Knott, Amy M. Scott, Caitlin A O'Connell, T. Susanto, Erin E. Kane
{"title":"Field and laboratory analysis for non-invasive wildlife and habitat health assessment and conservation","authors":"C. Knott, Amy M. Scott, Caitlin A O'Connell, T. Susanto, Erin E. Kane","doi":"10.1093/oso/9780198850243.003.0007","DOIUrl":null,"url":null,"abstract":"Laboratory methods are increasingly being used in remote field camps, or during mobile field surveys, to aid in wildlife conservation. This chapter explains how field laboratories have allowed for technological advances in sample preparation and preservation, and for both low and high-tech on-site analysis. It highlights how field samples can be used for health and physiological analyses, including measuring the nutritional content of plant foods, assessing hormones, C-peptide, and ketones from urine, examining faecal parasites, and using genetic techniques to determine individual identity, relatedness, and population genetic diversity. We explain how measurements of physiology and health promise to greatly improve our understanding of the relationship between disease prevalence in wild animals and anthropogenic disturbances. The authors’ research with critically endangered wild orangutans in Indonesia provides an illustrative case study, using field laboratories for rapid analysis of orangutan health status, such as assessing indicators of energy balance from urine and parasite prevalence from faeces. In addition, the chapter shows how new information can be gained from field-collected samples by taking advantage of technological advances in laboratory methodology and equipment to determine the nutrient content of foods, measure steroid hormones, and C-peptide and reveal genetic relationships. Understanding how these variables impact wildlife health and viability provides a critical tool for species conservation and helps make long-term research sustainable, provides capacity building opportunities, and forges relationships with local partners. Continued technological advances in the near future should bring more capability into field laboratories, providing data to aid conservation that is easier to obtain and more accessible.","PeriodicalId":158957,"journal":{"name":"Conservation Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198850243.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Laboratory methods are increasingly being used in remote field camps, or during mobile field surveys, to aid in wildlife conservation. This chapter explains how field laboratories have allowed for technological advances in sample preparation and preservation, and for both low and high-tech on-site analysis. It highlights how field samples can be used for health and physiological analyses, including measuring the nutritional content of plant foods, assessing hormones, C-peptide, and ketones from urine, examining faecal parasites, and using genetic techniques to determine individual identity, relatedness, and population genetic diversity. We explain how measurements of physiology and health promise to greatly improve our understanding of the relationship between disease prevalence in wild animals and anthropogenic disturbances. The authors’ research with critically endangered wild orangutans in Indonesia provides an illustrative case study, using field laboratories for rapid analysis of orangutan health status, such as assessing indicators of energy balance from urine and parasite prevalence from faeces. In addition, the chapter shows how new information can be gained from field-collected samples by taking advantage of technological advances in laboratory methodology and equipment to determine the nutrient content of foods, measure steroid hormones, and C-peptide and reveal genetic relationships. Understanding how these variables impact wildlife health and viability provides a critical tool for species conservation and helps make long-term research sustainable, provides capacity building opportunities, and forges relationships with local partners. Continued technological advances in the near future should bring more capability into field laboratories, providing data to aid conservation that is easier to obtain and more accessible.