A simulation study of the forward and backward thermocapillary migration of fluids in a microchannel

L. Le, K. Nguyen
{"title":"A simulation study of the forward and backward thermocapillary migration of fluids in a microchannel","authors":"L. Le, K. Nguyen","doi":"10.32508/stdjet.v3i4.753","DOIUrl":null,"url":null,"abstract":"In this study, the forward and backward thermocapillary migration of fluids in a microchannel is numerically investigated. Both the upper wall and the lower wall of the microchannel are set to be an ambient temperature. Two 40mW heat sources activated periodically are placed on the left side and the right side of the droplet in a microchannel. When the heat source is turned on, a pair of asymmetric thermocapillary convection vortices is formed inside the droplet. The isotherms inside the droplet are extremely distorted by the thermocapillary convection. The forward and backward thermocapillary migration results in the net thermocapillary momentum which drives a water droplet moves from the hot side of the open channel to the cold side. The temperature gradient at the free interface on the side of acting heat source is always smaller than that on the cold side. The actuation velocity of the liquid droplet first increases significantly, and then decreases continuously for various interval times. The dynamic contact angle of a water droplet is strongly affected by the forward and backward oil flow motion and the net thermocapillary momentum inside the droplet. It is alternated due to the pressure difference acting on the free interface between two immiscible fluids during actuation process.","PeriodicalId":205539,"journal":{"name":"Science & Technology Development Journal - Engineering and Technology","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Technology Development Journal - Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32508/stdjet.v3i4.753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the forward and backward thermocapillary migration of fluids in a microchannel is numerically investigated. Both the upper wall and the lower wall of the microchannel are set to be an ambient temperature. Two 40mW heat sources activated periodically are placed on the left side and the right side of the droplet in a microchannel. When the heat source is turned on, a pair of asymmetric thermocapillary convection vortices is formed inside the droplet. The isotherms inside the droplet are extremely distorted by the thermocapillary convection. The forward and backward thermocapillary migration results in the net thermocapillary momentum which drives a water droplet moves from the hot side of the open channel to the cold side. The temperature gradient at the free interface on the side of acting heat source is always smaller than that on the cold side. The actuation velocity of the liquid droplet first increases significantly, and then decreases continuously for various interval times. The dynamic contact angle of a water droplet is strongly affected by the forward and backward oil flow motion and the net thermocapillary momentum inside the droplet. It is alternated due to the pressure difference acting on the free interface between two immiscible fluids during actuation process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微通道中流体正向和反向热毛细迁移的模拟研究
本文对流体在微通道中的正向和反向热毛细迁移进行了数值研究。微通道的上壁和下壁均设置为环境温度。在微通道中液滴的左侧和右侧分别放置两个周期性激活的40mW热源。当热源开启时,液滴内部形成一对不对称的热毛细对流涡旋。液滴内部的等温线受到热毛细对流的极大扭曲。向前和向后的热毛细迁移导致净热毛细动量,驱动水滴从开放通道的热侧移动到冷侧。作用热源一侧自由界面处的温度梯度总是小于冷侧的温度梯度。液滴的驱动速度在不同的间隔时间内先显著增大,然后连续减小。液滴的动态接触角受液滴内油流的前后运动和净热毛细动量的强烈影响。由于在驱动过程中作用于两种不混相流体之间的自由界面上的压力差而产生交替。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Xây dựng hệ thống mô phỏng kiểm soát không lưu tại sân phục vụ trong đào tạo huấn luyện Kinematics modeling analysis of the geostationary satellite monitoring antenna system The Improving properties of Viscose fabric by water repellent finish Reconstruction finite element model of cars Optimal weight design problem of spur gears
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1