Image Segmentation Technology Based on Genetic Algorithm

Chong Tan, Ying Sun, Gongfa Li, Bo Tao, Shuang Xu, Fei Zeng
{"title":"Image Segmentation Technology Based on Genetic Algorithm","authors":"Chong Tan, Ying Sun, Gongfa Li, Bo Tao, Shuang Xu, Fei Zeng","doi":"10.1145/3316551.3318229","DOIUrl":null,"url":null,"abstract":"Image segmentation technology is one of the important topics in the field of digital image research. However, there is no uniform standard for existing image segmentation methods, and the traditional image segmentation method is only suitable for some specific occasions. Therefore, it is very urgent to research and develop new theories and methods of image segmentation technology. Genetic algorithm is a method for calculating the optimal solution by simulating the biological evolution process in the natural selection and genetic mechanism of biological evolution. It has strong robustness, parallelism, adaptability and fast convergence. It can be applied in image segmentation technology to determine the segmentation threshold. Therefore, this paper studies the image segmentation based on genetic algorithm, and compares different image segmentation algorithms. The experimental results show that the image segmentation effect based on genetic algorithm is better than the traditional image segmentation.","PeriodicalId":300199,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Digital Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316551.3318229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Image segmentation technology is one of the important topics in the field of digital image research. However, there is no uniform standard for existing image segmentation methods, and the traditional image segmentation method is only suitable for some specific occasions. Therefore, it is very urgent to research and develop new theories and methods of image segmentation technology. Genetic algorithm is a method for calculating the optimal solution by simulating the biological evolution process in the natural selection and genetic mechanism of biological evolution. It has strong robustness, parallelism, adaptability and fast convergence. It can be applied in image segmentation technology to determine the segmentation threshold. Therefore, this paper studies the image segmentation based on genetic algorithm, and compares different image segmentation algorithms. The experimental results show that the image segmentation effect based on genetic algorithm is better than the traditional image segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的图像分割技术
图像分割技术是数字图像研究领域的重要课题之一。但是,现有的图像分割方法没有统一的标准,传统的图像分割方法只适用于一些特定的场合。因此,研究和开发新的图像分割技术理论和方法显得十分迫切。遗传算法是在生物进化的自然选择和遗传机制中,模拟生物进化过程来计算最优解的一种方法。该算法具有较强的鲁棒性、并行性、自适应性和快速收敛性。它可以应用于图像分割技术来确定分割阈值。因此,本文对基于遗传算法的图像分割进行了研究,并对不同的图像分割算法进行了比较。实验结果表明,基于遗传算法的图像分割效果优于传统的图像分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brain Tumor Segmentation Using U-Net and Edge Contour Enhancement An Automatic Analysis Method for Seabed Mineral Resources Based on Image Brightness Equalization Lingual and Acoustic Differences in EWE Oral and Nasal Vowels Research on an Improved Algorithm of Professional Information Retrieval System An Improved Noise Elimination Model of EEG Based on Second Order Volterra Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1