Hai-qiang Zhao, Michael Hefenbrock, M. Beigl, M. Tahoori
{"title":"Aging-Aware Training for Printed Neuromorphic Circuits","authors":"Hai-qiang Zhao, Michael Hefenbrock, M. Beigl, M. Tahoori","doi":"10.1145/3508352.3549411","DOIUrl":null,"url":null,"abstract":"Printed electronics allow for ultra-low-cost circuit fabrication with unique properties such as flexibility, non-toxicity, and stretchability. Because of these advanced properties, there is a growing interest in adapting printed electronics for emerging areas such as fast-moving consumer goods and wearable technologies. In such domains, analog signal processing in or near the sensor is favorable. Printed neuromorphic circuits have been recently proposed as a solution to perform such analog processing natively. Additionally, their learning-based design process allows high efficiency of their optimization and enables them to mitigate the high process variations associated with low-cost printed processes. In this work, we address the aging of the printed components. This effect can significantly degrade the accuracy of printed neuromorphic circuits over time. For this, we develop a stochastic aging-model to describe the behavior of aged printed resistors and modify the training objective by considering the expected loss over the lifetime of the device. This approach ensures to provide acceptable accuracy over the device lifetime. Our experiments show that an overall 35.8% improvement in terms of expected accuracy over the device lifetime can be achieved using the proposed learning approach.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Printed electronics allow for ultra-low-cost circuit fabrication with unique properties such as flexibility, non-toxicity, and stretchability. Because of these advanced properties, there is a growing interest in adapting printed electronics for emerging areas such as fast-moving consumer goods and wearable technologies. In such domains, analog signal processing in or near the sensor is favorable. Printed neuromorphic circuits have been recently proposed as a solution to perform such analog processing natively. Additionally, their learning-based design process allows high efficiency of their optimization and enables them to mitigate the high process variations associated with low-cost printed processes. In this work, we address the aging of the printed components. This effect can significantly degrade the accuracy of printed neuromorphic circuits over time. For this, we develop a stochastic aging-model to describe the behavior of aged printed resistors and modify the training objective by considering the expected loss over the lifetime of the device. This approach ensures to provide acceptable accuracy over the device lifetime. Our experiments show that an overall 35.8% improvement in terms of expected accuracy over the device lifetime can be achieved using the proposed learning approach.