{"title":"Synchronization Games in P2P Energy Trading","authors":"O. Saukh, F. Papst, S. Saukh","doi":"10.1109/SmartGridComm.2018.8587421","DOIUrl":null,"url":null,"abstract":"The rise of distributed energy generation technologies along with grid constraints, and conventional non-consumer centric business models, is leading many to explore alternative configurations of the energy system. Particularly popular are peer-to-peer energy trading models in which the role of the energy company is replaced with a trustless transaction layer based on a public blockchain. However, to ensure stable operation of microgrids, an energy company is required to constantly balance supply and demand. In this paper, we study the problem that arises from the conflicting goals of prosumers (to make money) and network operators (to keep the network stable) that have to co-exist in future energy systems. We show that prosumers can play large-scale synchronization games to benefit from the system. If they synchronize their actions to artificially increase energy demand on the market, the resulting power peaks will force the microgrid operator to use backup generation capacities and, as a consequence, contribute to the increased profit margins for prosumers. We study synchronization games from a game-theoretical point of view and argue that even non-cooperative selfish prosumers can learn to play synchronization games independently and enforce undesired outcomes for consumers and the grid. We build a simple model where prosumers independently run Q-learning algorithms to learn their most profitable strategies and show that synchronization games constitute a Nash equilibrium. We discuss implications of our findings and argue the necessity of appropriate mechanism design for stable microgrid operation.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The rise of distributed energy generation technologies along with grid constraints, and conventional non-consumer centric business models, is leading many to explore alternative configurations of the energy system. Particularly popular are peer-to-peer energy trading models in which the role of the energy company is replaced with a trustless transaction layer based on a public blockchain. However, to ensure stable operation of microgrids, an energy company is required to constantly balance supply and demand. In this paper, we study the problem that arises from the conflicting goals of prosumers (to make money) and network operators (to keep the network stable) that have to co-exist in future energy systems. We show that prosumers can play large-scale synchronization games to benefit from the system. If they synchronize their actions to artificially increase energy demand on the market, the resulting power peaks will force the microgrid operator to use backup generation capacities and, as a consequence, contribute to the increased profit margins for prosumers. We study synchronization games from a game-theoretical point of view and argue that even non-cooperative selfish prosumers can learn to play synchronization games independently and enforce undesired outcomes for consumers and the grid. We build a simple model where prosumers independently run Q-learning algorithms to learn their most profitable strategies and show that synchronization games constitute a Nash equilibrium. We discuss implications of our findings and argue the necessity of appropriate mechanism design for stable microgrid operation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P2P能源交易中的同步博弈
分布式能源发电技术的兴起,伴随着电网的限制,以及传统的非以消费者为中心的商业模式,正在引导许多人探索能源系统的替代配置。特别受欢迎的是点对点能源交易模式,在这种模式中,能源公司的角色被基于公共区块链的无信任交易层所取代。然而,为了保证微电网的稳定运行,能源公司需要不断平衡供需。在本文中,我们研究了在未来能源系统中必须共存的产消者(赚钱)和网络运营商(保持网络稳定)的冲突目标所产生的问题。我们表明,产消者可以通过大规模的同步博弈从该系统中获益。如果他们同步行动,人为地增加市场上的能源需求,由此产生的电力峰值将迫使微电网运营商使用备用发电能力,因此,有助于提高产消者的利润空间。我们从博弈论的角度研究同步博弈,并认为即使是非合作的自私的产消者也可以学会独立地玩同步博弈,并为消费者和电网带来不希望的结果。我们建立了一个简单的模型,在这个模型中,产消者独立运行Q-learning算法来学习他们最有利可图的策略,并表明同步博弈构成了纳什均衡。我们讨论了研究结果的含义,并论证了微电网稳定运行的适当机制设计的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behind-the-Meter Solar Generation Disaggregation using Consumer Mixture Models Coordinated Planning of Multi-Energy System with District Heating Network A Cost-efficient Software Testbed for Cyber-Physical Security in IEC 61850-based Substations Joint Optimal Power Flow Routing and Decentralized Scheduling with Vehicle-to-Grid Regulation Service Energy Flexibility for Systems with large Thermal Masses with Applications to Shopping Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1