Towards GPU HEVC intra decoding: Seizing fine-grain parallelism

D. Souza, A. Ilic, N. Roma, L. Sousa
{"title":"Towards GPU HEVC intra decoding: Seizing fine-grain parallelism","authors":"D. Souza, A. Ilic, N. Roma, L. Sousa","doi":"10.1109/ICME.2015.7177515","DOIUrl":null,"url":null,"abstract":"To satisfy the growing demands on real-time video decoders for high frame resolutions, novel GPU parallel algorithms are proposed herein for fully compliant HEVC de-quantization, inverse transform and intra prediction. The proposed algorithms are designed to fully exploit and leverage the fine grain parallelism within these computationally demanding and highly data dependent modules. Moreover, the proposed approaches allow the efficient utilization of the GPU computational resources, while carefully managing the data accesses in the complex GPU memory hierarchy. The experimental results show that the real-time processing is achieved for all tested sequences and the most demanding QP, while delivering average fps of 118.6, 89.2 and 49.7 for Full HD, 2160p and Ultra HD 4K sequences, respectively.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

To satisfy the growing demands on real-time video decoders for high frame resolutions, novel GPU parallel algorithms are proposed herein for fully compliant HEVC de-quantization, inverse transform and intra prediction. The proposed algorithms are designed to fully exploit and leverage the fine grain parallelism within these computationally demanding and highly data dependent modules. Moreover, the proposed approaches allow the efficient utilization of the GPU computational resources, while carefully managing the data accesses in the complex GPU memory hierarchy. The experimental results show that the real-time processing is achieved for all tested sequences and the most demanding QP, while delivering average fps of 118.6, 89.2 and 49.7 for Full HD, 2160p and Ultra HD 4K sequences, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对GPU HEVC内部解码:抓住细粒度并行
为了满足实时视频解码器对高帧分辨率的需求,本文提出了完全兼容HEVC去量化、逆变换和帧内预测的新型GPU并行算法。所提出的算法旨在充分利用和利用这些计算要求高且高度依赖数据的模块中的细粒度并行性。此外,所提出的方法允许高效利用GPU计算资源,同时仔细管理复杂GPU内存层次结构中的数据访问。实验结果表明,在全高清、2160p和超高清4K序列中,平均帧率分别为118.6、89.2和49.7,对所有测试序列和最苛刻的QP都实现了实时处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1