An EMD-SVM model with error compensation for short-term wind speed forecasting

Yuanyuan Xu, Tianhe Yao, Gen-ke Yang
{"title":"An EMD-SVM model with error compensation for short-term wind speed forecasting","authors":"Yuanyuan Xu, Tianhe Yao, Gen-ke Yang","doi":"10.1504/IJITM.2019.10021209","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an empirical mode decomposition-support vector machine (EMD-SVM) model with error compensation in order to reduce the cumulative error and improve the prediction accuracy of short-term wind speed forecasting. The essential idea behind the proposed approach is that the error of the current prediction is highly correlated with the previous prediction errors, and the forecasted speed should be compensated in terms of the errors incurred from previous predictions. Specifically, we first predict the historical data by the EMD-SVM model so as to obtain the corresponding prediction errors. Then, we establish the error compensation mechanism. Finally, we combine the EMD-SVM model with error compensation to obtain the final prediction results. The error compensation strategy is validated by a series of actual 10 min wind speed data collected from New Zealand. Experimental results demonstrate that the proposed EMD-SVM model with error compensation can be successfully applied to short-term wind speed forecasting, and it has higher accuracy and stronger robustness compared with the method without error compensation.","PeriodicalId":340536,"journal":{"name":"Int. J. Inf. Technol. Manag.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJITM.2019.10021209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose an empirical mode decomposition-support vector machine (EMD-SVM) model with error compensation in order to reduce the cumulative error and improve the prediction accuracy of short-term wind speed forecasting. The essential idea behind the proposed approach is that the error of the current prediction is highly correlated with the previous prediction errors, and the forecasted speed should be compensated in terms of the errors incurred from previous predictions. Specifically, we first predict the historical data by the EMD-SVM model so as to obtain the corresponding prediction errors. Then, we establish the error compensation mechanism. Finally, we combine the EMD-SVM model with error compensation to obtain the final prediction results. The error compensation strategy is validated by a series of actual 10 min wind speed data collected from New Zealand. Experimental results demonstrate that the proposed EMD-SVM model with error compensation can be successfully applied to short-term wind speed forecasting, and it has higher accuracy and stronger robustness compared with the method without error compensation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带误差补偿的EMD-SVM短期风速预报模型
为了减少累积误差,提高短期风速预报的精度,提出了一种带误差补偿的经验模态分解-支持向量机(EMD-SVM)模型。提出的方法背后的基本思想是当前预测的误差与先前的预测误差高度相关,并且预测的速度应该根据先前预测产生的误差进行补偿。具体来说,我们首先利用EMD-SVM模型对历史数据进行预测,从而得到相应的预测误差。然后,建立误差补偿机制。最后,将EMD-SVM模型与误差补偿相结合,得到最终的预测结果。通过在新西兰收集的一系列实际10分钟风速数据对误差补偿策略进行了验证。实验结果表明,本文提出的带误差补偿的EMD-SVM模型能够成功地应用于短期风速预报,与不带误差补偿的方法相比,具有更高的精度和更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Log automaton under conditions of infrequent behaviour mining A recommendation algorithm for point of interest using time-based collaborative filtering Simulation verification for automobile anti-lock braking system bench test principle OBWD: an ontology and Bayesian network-based workflow design platform Moderating effect of information technology ambidexterity linking new human resource management practices and innovation performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1