{"title":"Using consensus measures for atlas construction","authors":"L. Ramus, G. Malandain","doi":"10.1109/ISBI.2009.5193271","DOIUrl":null,"url":null,"abstract":"Atlas-based segmentation has been shown to provide promising results to delineate critical structures for radiotherapy planning. However, it requires to have a reference image with its reference segmentation available. Classical methods used to build an average segmentation can lead to over-segmentation in case of high variability among the manual segmentations. We propose in this paper a consensus-based approach to construct a reference segmentation from a database of manually delineated images. We first compute local consensus measures to estimate a variability map, and then deduct from it a consensus segmentation. Finally, the proposed method is evaluated using a dataset of 64 manually delineated images of the head and neck region.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Atlas-based segmentation has been shown to provide promising results to delineate critical structures for radiotherapy planning. However, it requires to have a reference image with its reference segmentation available. Classical methods used to build an average segmentation can lead to over-segmentation in case of high variability among the manual segmentations. We propose in this paper a consensus-based approach to construct a reference segmentation from a database of manually delineated images. We first compute local consensus measures to estimate a variability map, and then deduct from it a consensus segmentation. Finally, the proposed method is evaluated using a dataset of 64 manually delineated images of the head and neck region.