Real-Time 3D Hand-Object Pose Estimation for Mobile Devices

Yue Yin, C. McCarthy, Dana Rezazadegan
{"title":"Real-Time 3D Hand-Object Pose Estimation for Mobile Devices","authors":"Yue Yin, C. McCarthy, Dana Rezazadegan","doi":"10.1109/ICIP42928.2021.9506135","DOIUrl":null,"url":null,"abstract":"Interest in 3D hand pose estimation is rapidly growing, offering the potential for real-time hand gesture recognition in a range of interactive VR/AR applications, and beyond. Most current 3D hand pose estimation models rely on dedicated depth-sensing cameras and/or specialised hardware support to handle both the high computation and memory requirements. However, such requirements hinder the practical application of such models on mobile devices or in other embedded computing contexts. To address this, we propose a lightweight model for hand and object pose estimation specifically targeting mobile applications. Using RGB images only, we show how our approach achieves real-time performance, comparable accuracy, and an 81% model size reduction compared with state-of-the-art methods, thereby supporting the feasibility of the model for deployment on mobile platforms.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Interest in 3D hand pose estimation is rapidly growing, offering the potential for real-time hand gesture recognition in a range of interactive VR/AR applications, and beyond. Most current 3D hand pose estimation models rely on dedicated depth-sensing cameras and/or specialised hardware support to handle both the high computation and memory requirements. However, such requirements hinder the practical application of such models on mobile devices or in other embedded computing contexts. To address this, we propose a lightweight model for hand and object pose estimation specifically targeting mobile applications. Using RGB images only, we show how our approach achieves real-time performance, comparable accuracy, and an 81% model size reduction compared with state-of-the-art methods, thereby supporting the feasibility of the model for deployment on mobile platforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动设备实时三维手-对象姿态估计
人们对3D手部姿势估计的兴趣正在迅速增长,这为一系列交互式VR/AR应用以及其他应用提供了实时手势识别的潜力。目前大多数3D手姿估计模型依赖于专用的深度感测相机和/或专门的硬件支持来处理高计算和内存要求。然而,这些要求阻碍了这些模型在移动设备或其他嵌入式计算环境中的实际应用。为了解决这个问题,我们提出了一个轻量级的手部和物体姿态估计模型,专门针对移动应用程序。仅使用RGB图像,我们展示了我们的方法如何实现实时性能,相当的准确性,并且与最先进的方法相比,模型尺寸减少了81%,从而支持该模型在移动平台上部署的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1