The impact of tool configuration spaces on the evaluation of configurable taint analysis for Android

Austin Mordahl, Shiyi Wei
{"title":"The impact of tool configuration spaces on the evaluation of configurable taint analysis for Android","authors":"Austin Mordahl, Shiyi Wei","doi":"10.1145/3460319.3464823","DOIUrl":null,"url":null,"abstract":"The most popular static taint analysis tools for Android allow users to change the underlying analysis algorithms through configuration options. However, the large configuration spaces make it difficult for developers and users alike to understand the full capabilities of these tools, and studies to-date have only focused on individual configurations. In this work, we present the first study that evaluates the configurations in Android taint analysis tools, focusing on the two most popular tools, FlowDroid and DroidSafe. First, we perform a manual code investigation to better understand how configurations are implemented in both tools. We formalize the expected effects of configuration option settings in terms of precision and soundness partial orders which we use to systematically test the configuration space. Second, we create a new dataset of 756 manually classified flows across 18 open-source real-world apps and conduct large-scale experiments on this dataset and micro-benchmarks. We observe that configurations make significant tradeoffs on the performance, precision, and soundness of both tools. The studies to-date would reach different conclusions on the tools' capabilities were they to consider configurations or use real-world datasets. In addition, we study the individual options through a statistical analysis and make actionable recommendations for users to tune the tools to their own ends. Finally, we use the partial orders to test the tool configuration spaces and detect 21 instances where options behaved in unexpected and incorrect ways, demonstrating the need for rigorous testing of configuration spaces.","PeriodicalId":188008,"journal":{"name":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460319.3464823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The most popular static taint analysis tools for Android allow users to change the underlying analysis algorithms through configuration options. However, the large configuration spaces make it difficult for developers and users alike to understand the full capabilities of these tools, and studies to-date have only focused on individual configurations. In this work, we present the first study that evaluates the configurations in Android taint analysis tools, focusing on the two most popular tools, FlowDroid and DroidSafe. First, we perform a manual code investigation to better understand how configurations are implemented in both tools. We formalize the expected effects of configuration option settings in terms of precision and soundness partial orders which we use to systematically test the configuration space. Second, we create a new dataset of 756 manually classified flows across 18 open-source real-world apps and conduct large-scale experiments on this dataset and micro-benchmarks. We observe that configurations make significant tradeoffs on the performance, precision, and soundness of both tools. The studies to-date would reach different conclusions on the tools' capabilities were they to consider configurations or use real-world datasets. In addition, we study the individual options through a statistical analysis and make actionable recommendations for users to tune the tools to their own ends. Finally, we use the partial orders to test the tool configuration spaces and detect 21 instances where options behaved in unexpected and incorrect ways, demonstrating the need for rigorous testing of configuration spaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工具配置空间对Android可配置污染分析评估的影响
最流行的Android静态污染分析工具允许用户通过配置选项更改底层分析算法。然而,大的配置空间使得开发人员和用户很难理解这些工具的全部功能,并且迄今为止的研究只关注于单个配置。在这项工作中,我们提出了第一项评估Android污染分析工具配置的研究,重点关注两个最流行的工具,FlowDroid和DroidSafe。首先,我们执行手动代码调查,以更好地理解配置是如何在这两个工具中实现的。我们将组态选项设置的预期效果形式化为精度和稳健性偏序,我们用它来系统地测试组态空间。其次,我们创建了一个新的数据集,其中包含18个开源现实世界应用程序中的756个手动分类流,并在该数据集和微基准上进行了大规模实验。我们观察到,配置对这两种工具的性能、精度和稳健性做出了重大权衡。如果考虑配置或使用真实数据集,迄今为止的研究将得出不同的结论。此外,我们通过统计分析研究单个选项,并为用户提供可操作的建议,以调整工具以达到自己的目的。最后,我们使用部分顺序来测试工具配置空间,并检测21个实例,其中选项以意想不到的和不正确的方式表现,证明需要严格测试配置空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantic table structure identification in spreadsheets Parema: an unpacking framework for demystifying VM-based Android packers TERA: optimizing stochastic regression tests in machine learning projects Empirically evaluating readily available information for regression test optimization in continuous integration RESTest: automated black-box testing of RESTful web APIs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1