Cross-Scale Context Extracted Hashing for Fine-Grained Image Binary Encoding

Xuetong Xue, Jiaying Shi, Xinxue He, Sheng Xu, Zhaoming Pan
{"title":"Cross-Scale Context Extracted Hashing for Fine-Grained Image Binary Encoding","authors":"Xuetong Xue, Jiaying Shi, Xinxue He, Sheng Xu, Zhaoming Pan","doi":"10.48550/arXiv.2210.07572","DOIUrl":null,"url":null,"abstract":"Deep hashing has been widely applied to large-scale image retrieval tasks owing to efficient computation and low storage cost by encoding high-dimensional image data into binary codes. Since binary codes do not contain as much information as float features, the essence of binary encoding is preserving the main context to guarantee retrieval quality. However, the existing hashing methods have great limitations on suppressing redundant background information and accurately encoding from Euclidean space to Hamming space by a simple sign function. In order to solve these problems, a Cross-Scale Context Extracted Hashing Network (CSCE-Net) is proposed in this paper. Firstly, we design a two-branch framework to capture fine-grained local information while maintaining high-level global semantic information. Besides, Attention guided Information Extraction module (AIE) is introduced between two branches, which suppresses areas of low context information cooperated with global sliding windows. Unlike previous methods, our CSCE-Net learns a content-related Dynamic Sign Function (DSF) to replace the original simple sign function. Therefore, the proposed CSCE-Net is context-sensitive and able to perform well on accurate image binary encoding. We further demonstrate that our CSCE-Net is superior to the existing hashing methods, which improves retrieval performance on standard benchmarks.","PeriodicalId":119756,"journal":{"name":"Asian Conference on Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Conference on Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.07572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep hashing has been widely applied to large-scale image retrieval tasks owing to efficient computation and low storage cost by encoding high-dimensional image data into binary codes. Since binary codes do not contain as much information as float features, the essence of binary encoding is preserving the main context to guarantee retrieval quality. However, the existing hashing methods have great limitations on suppressing redundant background information and accurately encoding from Euclidean space to Hamming space by a simple sign function. In order to solve these problems, a Cross-Scale Context Extracted Hashing Network (CSCE-Net) is proposed in this paper. Firstly, we design a two-branch framework to capture fine-grained local information while maintaining high-level global semantic information. Besides, Attention guided Information Extraction module (AIE) is introduced between two branches, which suppresses areas of low context information cooperated with global sliding windows. Unlike previous methods, our CSCE-Net learns a content-related Dynamic Sign Function (DSF) to replace the original simple sign function. Therefore, the proposed CSCE-Net is context-sensitive and able to perform well on accurate image binary encoding. We further demonstrate that our CSCE-Net is superior to the existing hashing methods, which improves retrieval performance on standard benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于细粒度图像二值编码的跨尺度上下文提取哈希
深度哈希将高维图像数据编码为二进制码,计算效率高,存储成本低,已广泛应用于大规模图像检索任务中。由于二进制编码不像浮点特征那样包含大量的信息,因此二进制编码的本质是保留主要上下文以保证检索质量。然而,现有的哈希方法在抑制冗余背景信息和通过简单的符号函数从欧几里得空间精确编码到汉明空间方面存在很大的局限性。为了解决这些问题,本文提出了一种跨尺度上下文提取哈希网络(CSCE-Net)。首先,我们设计了一个两分支框架来捕获细粒度的局部信息,同时保持高层次的全局语义信息。在两个分支之间引入注意引导信息提取模块(AIE),与全局滑动窗口协同抑制低上下文信息区域。与以前的方法不同,我们的CSCE-Net学习了一个与内容相关的动态符号函数(DSF)来代替原来的简单符号函数。因此,本文提出的CSCE-Net具有上下文敏感性,能够对图像进行精确的二进制编码。我们进一步证明了我们的CSCE-Net优于现有的散列方法,这提高了标准基准测试的检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RoLNiP: Robust Learning Using Noisy Pairwise Comparisons AIIR-MIX: Multi-Agent Reinforcement Learning Meets Attention Individual Intrinsic Reward Mixing Network On the Interpretability of Attention Networks Evaluating the Perceived Safety of Urban City via Maximum Entropy Deep Inverse Reinforcement Learning One Gradient Frank-Wolfe for Decentralized Online Convex and Submodular Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1