Pruning large lexicons using generalized word shape descriptors

S. Madhvanath, V. Krpasundar
{"title":"Pruning large lexicons using generalized word shape descriptors","authors":"S. Madhvanath, V. Krpasundar","doi":"10.1109/ICDAR.1997.620561","DOIUrl":null,"url":null,"abstract":"We present a technique for pruning of large lexicons for recognition of cursive script words. The technique involves extraction and representation of downward pen-strokes from the cursive word (off-line or online) to obtain a generalized descriptor which provides a coarse characterization of word shape. The descriptor is matched with ideal descriptors of lexicon entries organized as a trie. When used with a static lexicon of 21,000 words, the accuracy of reduction to 1000 words exceeds 95%.","PeriodicalId":435320,"journal":{"name":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1997.620561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present a technique for pruning of large lexicons for recognition of cursive script words. The technique involves extraction and representation of downward pen-strokes from the cursive word (off-line or online) to obtain a generalized descriptor which provides a coarse characterization of word shape. The descriptor is matched with ideal descriptors of lexicon entries organized as a trie. When used with a static lexicon of 21,000 words, the accuracy of reduction to 1000 words exceeds 95%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用广义词形描述符修剪大型词典
我们提出了一种用于识别草书词的大词典修剪技术。该技术包括从草书单词(离线或在线)中提取和表示向下的笔划,以获得一个提供单词形状粗略表征的广义描述符。描述符与组织为trie的字典条目的理想描述符匹配。当与21000个单词的静态词典一起使用时,减少到1000个单词的准确率超过95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Document layout analysis based on emergent computation Offline handwritten Chinese character recognition via radical extraction and recognition Boundary normalization for recognition of non-touching non-degraded characters Words recognition using associative memory Image and text coupling for creating electronic books from manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1