A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training

Siddharth Singh, Olatunji Ruwase, A. Awan, Samyam Rajbhandari, Yuxiong He, A. Bhatele
{"title":"A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training","authors":"Siddharth Singh, Olatunji Ruwase, A. Awan, Samyam Rajbhandari, Yuxiong He, A. Bhatele","doi":"10.1145/3577193.3593704","DOIUrl":null,"url":null,"abstract":"Mixture-of-Experts (MoE) is a neural network architecture that adds sparsely activated expert blocks to a base model, increasing the number of parameters without impacting computational costs. However, current distributed deep learning frameworks are limited in their ability to train high-quality MoE models with large base models. In this work, we present DeepSpeed-TED, a novel, three-dimensional, hybrid parallel algorithm that combines data, tensor, and expert parallelism to enable the training of MoE models with 4--8× larger base models than the current state-of-the-art. We also describe memory optimizations in the optimizer step, and communication optimizations that eliminate unnecessary data movement. We implement our approach in DeepSpeed and achieve speedups of 26% over a baseline (i.e. without our communication optimizations) when training a 40 billion parameter MoE model (6.7 billion base model with 16 experts) on 128 V100 GPUs.","PeriodicalId":424155,"journal":{"name":"Proceedings of the 37th International Conference on Supercomputing","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577193.3593704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mixture-of-Experts (MoE) is a neural network architecture that adds sparsely activated expert blocks to a base model, increasing the number of parameters without impacting computational costs. However, current distributed deep learning frameworks are limited in their ability to train high-quality MoE models with large base models. In this work, we present DeepSpeed-TED, a novel, three-dimensional, hybrid parallel algorithm that combines data, tensor, and expert parallelism to enable the training of MoE models with 4--8× larger base models than the current state-of-the-art. We also describe memory optimizations in the optimizer step, and communication optimizations that eliminate unnecessary data movement. We implement our approach in DeepSpeed and achieve speedups of 26% over a baseline (i.e. without our communication optimizations) when training a 40 billion parameter MoE model (6.7 billion base model with 16 experts) on 128 V100 GPUs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于张量-专家-数据并行的混合专家训练优化方法
混合专家(MoE)是一种神经网络架构,它将稀疏激活的专家块添加到基本模型中,在不影响计算成本的情况下增加参数的数量。然而,目前的分布式深度学习框架在训练具有大型基础模型的高质量MoE模型的能力方面受到限制。在这项工作中,我们提出了DeepSpeed-TED,这是一种新颖的三维混合并行算法,它结合了数据、张量和专家并行性,使MoE模型的训练比目前最先进的基础模型大4- 8倍。我们还描述了优化器步骤中的内存优化,以及消除不必要数据移动的通信优化。我们在DeepSpeed中实现了我们的方法,并在128 V100 gpu上训练400亿参数的MoE模型(16位专家的67亿基本模型)时,在基线(即没有我们的通信优化)上实现了26%的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FLORIA: A Fast and Featherlight Approach for Predicting Cache Performance FT-topo: Architecture-Driven Folded-Triangle Partitioning for Communication-efficient Graph Processing Using Additive Modifications in LU Factorization Instead of Pivoting GRAP: Group-level Resource Allocation Policy for Reconfigurable Dragonfly Network in HPC Enabling Reconfigurable HPC through MPI-based Inter-FPGA Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1