Tracking multiple pedestrians in real-time using kinematics

S. Apewokin, B. Valentine, M. R. Bales, L. Wills, D. S. Wills
{"title":"Tracking multiple pedestrians in real-time using kinematics","authors":"S. Apewokin, B. Valentine, M. R. Bales, L. Wills, D. S. Wills","doi":"10.1109/CVPRW.2008.4563149","DOIUrl":null,"url":null,"abstract":"We present an algorithm for real-time tracking of multiple pedestrians in a dynamic scene. The algorithm is targeted for embedded systems and reduces computational and storage costs by using an inexpensive kinematic tracking model with only fixed-point arithmetic representations. Our algorithm leverages from the observation that pedestrians in a dynamic scene tend to move with uniform speed over a small number of consecutive frames. We use a multimodal background modeling technique to accurately segment the foreground (moving people) from the background. We then use connectivity analysis to identify blobs in the foreground and calculate the center of mass of each blob. Finally, we establish correspondence between the center of mass of each blob in the current frame with center of mass information gathered from the two immediately preceding frames. We evaluate our algorithm on a real outdoor video sequence taken with an inexpensive webcam. Our implementation successfully tracks each pedestrian from frame to frame in real-time. Our algorithm performs well in challenging situations resulting from occlusion and crowded conditions, running on an eBox-2300 Thin Client VESA PC.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We present an algorithm for real-time tracking of multiple pedestrians in a dynamic scene. The algorithm is targeted for embedded systems and reduces computational and storage costs by using an inexpensive kinematic tracking model with only fixed-point arithmetic representations. Our algorithm leverages from the observation that pedestrians in a dynamic scene tend to move with uniform speed over a small number of consecutive frames. We use a multimodal background modeling technique to accurately segment the foreground (moving people) from the background. We then use connectivity analysis to identify blobs in the foreground and calculate the center of mass of each blob. Finally, we establish correspondence between the center of mass of each blob in the current frame with center of mass information gathered from the two immediately preceding frames. We evaluate our algorithm on a real outdoor video sequence taken with an inexpensive webcam. Our implementation successfully tracks each pedestrian from frame to frame in real-time. Our algorithm performs well in challenging situations resulting from occlusion and crowded conditions, running on an eBox-2300 Thin Client VESA PC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用运动学实时跟踪多行人
提出了一种动态场景中多行人实时跟踪算法。该算法的目标是嵌入式系统,并通过使用一种廉价的运动跟踪模型,只有不动点的算法表示,减少计算和存储成本。我们的算法利用了动态场景中的行人倾向于在少量连续帧内以均匀速度移动的观察结果。我们使用多模态背景建模技术来准确地从背景中分割前景(移动的人)。然后,我们使用连通性分析来识别前景中的斑点,并计算每个斑点的质心。最后,我们建立了当前帧中每个斑点的质心与从前两帧中收集的质心信息之间的对应关系。我们用一个便宜的网络摄像头拍摄的真实户外视频序列来评估我们的算法。我们的实现成功地从一帧到另一帧实时跟踪每个行人。我们的算法在eBox-2300瘦客户端VESA PC上运行,在闭塞和拥挤的条件下表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-fiber reconstruction from DW-MRI using a continuous mixture of von Mises-Fisher distributions New insights into the calibration of ToF-sensors Circular generalized cylinder fitting for 3D reconstruction in endoscopic imaging based on MRF A GPU-based implementation of motion detection from a moving platform Face model fitting based on machine learning from multi-band images of facial components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1