An Optimized Soil Moisture Prediction Model for Smart Agriculture Using Gaussian Process Regression

Zoren P. Mabunga, J. D. dela Cruz
{"title":"An Optimized Soil Moisture Prediction Model for Smart Agriculture Using Gaussian Process Regression","authors":"Zoren P. Mabunga, J. D. dela Cruz","doi":"10.1109/CSPA55076.2022.9781897","DOIUrl":null,"url":null,"abstract":"An accurate soil moisture model is critical in the design and implementation of a smart agriculture system. Accurate soil moisture prediction allows an efficient water resources allocation. This paper presented a soil moisture model using different environmental parameters such as humidity, temperature, light intensity, and rain occurrence as inputs or predictor variables. Gaussian process regression algorithm, a non-parametric machine learning algorithm, was used to develop the model. The most effective kernel function was also determined by developing four different GPR models using a different kernel function. In terms of RMSE, the rational quadratic function obtained the lowest value. To further improve the accuracy of the GPR model, an automated hyperparameter tuning was done using a Bayesian optimization algorithm. Three hyperparameters were tuned using the Bayesian optimization algorithm, which improved the GPR model's performance. The optimized GPR model achieved the lowest RMSE and MAE of 3.596 and 1.176, respectively.","PeriodicalId":174315,"journal":{"name":"2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA55076.2022.9781897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An accurate soil moisture model is critical in the design and implementation of a smart agriculture system. Accurate soil moisture prediction allows an efficient water resources allocation. This paper presented a soil moisture model using different environmental parameters such as humidity, temperature, light intensity, and rain occurrence as inputs or predictor variables. Gaussian process regression algorithm, a non-parametric machine learning algorithm, was used to develop the model. The most effective kernel function was also determined by developing four different GPR models using a different kernel function. In terms of RMSE, the rational quadratic function obtained the lowest value. To further improve the accuracy of the GPR model, an automated hyperparameter tuning was done using a Bayesian optimization algorithm. Three hyperparameters were tuned using the Bayesian optimization algorithm, which improved the GPR model's performance. The optimized GPR model achieved the lowest RMSE and MAE of 3.596 and 1.176, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯过程回归的智能农业土壤水分预测优化模型
准确的土壤湿度模型在智能农业系统的设计和实施中至关重要。准确的土壤水分预测可以实现有效的水资源配置。本文提出了以不同环境参数如湿度、温度、光照强度和降雨作为输入或预测变量的土壤湿度模型。采用非参数机器学习算法高斯过程回归算法建立模型。通过使用不同的核函数开发四种不同的GPR模型,确定了最有效的核函数。在RMSE方面,有理二次函数的RMSE最小。为了进一步提高探地雷达模型的精度,采用贝叶斯优化算法对模型进行了超参数自动调优。利用贝叶斯优化算法对三个超参数进行了调优,提高了探地雷达模型的性能。优化后的GPR模型RMSE和MAE最低,分别为3.596和1.176。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear Time-Frequency Analysis of Lightning Strike Surge Current Waveforms Recorded at Gasing Hill, Kuala Lumpur Development of Integrated Sensor System for Intelligent Transportation System Image Steganalysis based on Pretrained Convolutional Neural Networks Segmentation and Classification for Breast Cancer Ultrasound Images Using Deep Learning Techniques: A Review Automated Trading System for Forecasting the Foreign Exchange Market Using Technical Analysis Indicators and Artificial Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1