Distributed diffusion nonnegative LMS algorithm over sensor networks

Wei Huang, Xiaolong Deng, Yuzhu Ji, Shengyong Chen
{"title":"Distributed diffusion nonnegative LMS algorithm over sensor networks","authors":"Wei Huang, Xiaolong Deng, Yuzhu Ji, Shengyong Chen","doi":"10.1109/INDIN.2016.7819267","DOIUrl":null,"url":null,"abstract":"Since most distributed estimation algorithms only try to achieve high estimation precision while ignoring the positive-negative problem of components in the true parameter, estimation using these methods may be physically absurd and uninterpretable. In order to avoid erroneous results, we need to add a nonnegative constraint on the parameter to be estimated. In this paper, we propose a novel distributed diffusion nonnegative LMS algorithm with regularization for estimating some specific parameter. The algorithm keeps the non-negativity of all components in the parameter in the adaptation process. Simulations results illustrate the advantage of our algorithm in the low steady MSD level and high convergence rate.","PeriodicalId":421680,"journal":{"name":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2016.7819267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Since most distributed estimation algorithms only try to achieve high estimation precision while ignoring the positive-negative problem of components in the true parameter, estimation using these methods may be physically absurd and uninterpretable. In order to avoid erroneous results, we need to add a nonnegative constraint on the parameter to be estimated. In this paper, we propose a novel distributed diffusion nonnegative LMS algorithm with regularization for estimating some specific parameter. The algorithm keeps the non-negativity of all components in the parameter in the adaptation process. Simulations results illustrate the advantage of our algorithm in the low steady MSD level and high convergence rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器网络的分布扩散非负LMS算法
由于大多数分布式估计算法只试图达到较高的估计精度,而忽略了真参数中分量的正负问题,使用这些方法进行估计可能在物理上是荒谬的和不可解释的。为了避免错误的结果,我们需要在待估计的参数上添加一个非负约束。本文提出了一种新的正则化分布扩散非负LMS算法,用于估计某些特定参数。该算法在自适应过程中保持参数中各分量的非负性。仿真结果表明了该算法在低稳态MSD水平和高收敛速度方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LPV modelling and LPV observer-based fault detection for wind turbine systems Determining the optimal level of autonomy in cyber-physical production systems Detecting illegally parked vehicle based on cumulative dual foreground difference An electronic stethoscope for heart diseases based on micro-electro-mechanical-system microphone A PID controller for the underwater robot station-keeping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1