Multisensor multiple-attribute data association

J. Jing, Guo Jing, Luo Peng Fei, Liu Sheng, Sun Zhong Kong
{"title":"Multisensor multiple-attribute data association","authors":"J. Jing, Guo Jing, Luo Peng Fei, Liu Sheng, Sun Zhong Kong","doi":"10.1109/ICR.1996.574474","DOIUrl":null,"url":null,"abstract":"A multisensor system can provide a variety of target information (including dynamic parameters and attribute parameters). Target dynamic parameters are regarded as a kind of target kinematic attribute. A probability assignment method is explained in two cases both of process noise and measurement noise being Gaussis statistics and of being non-Gaussis statistics. A multisensor multiple-attribute data association method is presented based on Dempster and Shafer (D-S) evidence theory, and this approach is illustrated by simulations involving multisensor multiple targets in a dense clutter environment. Comparison with the NN (nearest-neighbour) method which only uses target dynamic parameters shows that the approach has an improved tracking accuracy and resolved correlation ambiguity.","PeriodicalId":144063,"journal":{"name":"Proceedings of International Radar Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICR.1996.574474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A multisensor system can provide a variety of target information (including dynamic parameters and attribute parameters). Target dynamic parameters are regarded as a kind of target kinematic attribute. A probability assignment method is explained in two cases both of process noise and measurement noise being Gaussis statistics and of being non-Gaussis statistics. A multisensor multiple-attribute data association method is presented based on Dempster and Shafer (D-S) evidence theory, and this approach is illustrated by simulations involving multisensor multiple targets in a dense clutter environment. Comparison with the NN (nearest-neighbour) method which only uses target dynamic parameters shows that the approach has an improved tracking accuracy and resolved correlation ambiguity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多传感器多属性数据关联
多传感器系统可以提供多种目标信息(包括动态参数和属性参数)。目标动态参数被认为是目标的一种运动学属性。在过程噪声和测量噪声为高斯统计量和非高斯统计量两种情况下,给出了一种概率分配方法。提出了一种基于Dempster和Shafer (D-S)证据理论的多传感器多属性数据关联方法,并通过密集杂波环境下多传感器多目标的仿真验证了该方法的有效性。与仅使用目标动态参数的神经网络(最近邻)方法相比,该方法提高了跟踪精度,解决了相关模糊问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive beamforming of thinned stepped frequency waveforms applied to imaging Improvements on the range alignment of the motion compensation for ISAR imaging Prediction and representation for wideband signatures of radar targets Recurrent neural network for high-resolution radar ship target recognition The skew-canceling method in spatial-temporal processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1